
PHY–396 T. Problem set #4. Due September 24, 2009.

This homework is about Ward–Takahashi identities in supersymmetric QED,

L =

∫

d4θ

(

Ae+2VA + Be−2VB +
1

8g2
V DαD

2
DαV

)

. (1)

For simplicity I take the charged chiral superfields A and B to be massless. This is not important

for the Ward identities themselves — they hold just as well for the massive charged fields —

but it simplifies the proofs.

Note notations: in the following, Φ stands for either A or B and Φ for the corresponding A

or B; q = ±1 is the electric charge of the chiral field in question, q = +1 for the A and q = −1

for the B. The vector field are normalized non-canonically, V = gVcan. Consequently, the vector

propagators carry a factor g2 while the vertices do not carry power of g (vertex = i(2q)n).

1. Consider the amplitudes involving two charged fields and any number n = 0, 1, 2, . . . of

the vector fields,

ΦΦ

V1
V2 Vn

= i(2q)n
∫

d4θΦMn(V1, . . . , Vn) Φ. (2)

These amplitudes are amputated with respect to the vector fields V1, . . . , Vn but not the

chiral fields Φ and Φ; in other words, they include the external lines for the Φ and Φ but

not for the vectors. For example, at the tree level

M
tree
0 = =

iD
2
D2

16p2
,

M
tree
1 (V1) = =

iD
2
D2

16p2
2

(iV1)
iD

2
D2

16p2
1

,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3)
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Your task is to show that if any of the vector fields happen to be chiral or antichiral,

Vi = Λ(y, θ) or Vi = Λ(ȳ, θ̄), then

Mn+1(V1, . . . , Vn,Λ) = −Λ ×Mn(V1, . . . , Vn),

Mn+1(V1, . . . , Vn,Λ) = −Mn(V1, . . . , Vn)× Λ,
(4)

or graphically

ΦΦ

V1 Vn

Λ

= −
ΦΦ

V1 Vn

Λ

,

ΦΦ

V1 Vn

Λ

= −
ΦΦ

V1 Vn

Λ

.

(5)

(a) Prove the relations (4) at the tree level. Note: this does not work diagram-by-diagram.

Instead, you have to some over all the places the (n + 1)st “photon” Vn+1 = Λ or

Vn+1 = Λ can be inserted into an amplitude that already has n other photons.
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Now consider the n–vector amplitudes without any external Φ or Φ lines,

V1V2

V3 Vn

=

∫

d4θ iVn(V1, . . . , Vn). (6)

A very important Ward–Takahashi identity says that all these amplitudes vanish when

any one of the vectors Vi is chiral or antichiral,

∫

d4θ V(V1, . . . , Vn) = 0 when any Vi = Λ or Vi = Λ (7)

(b) Prove this identity at the one-loop level. Note: this involves cancellation between

diagrams where that bad vector Vn = Λ or Vn = Λ is inserted into the charged loop

relative to the other n− 1 vectors.

Assume that all the loop-momentum integrals either converge or else may be regulated

in a way that does not affect the vertices or the chiral propagators. This assumption

allows us to cancel diagrams graphically without worrying about shifting the loop

momenta qµ → qµ + pµ in divergent
∫

d4q integrals.

(c) Finally, use (a) and (b) to prove the relations (4) and (7) to all orders of the pertur-

bation theory.
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2. Thanks to the Ward–Takahashi identities, SQED is renormalizable in superspace. In this

exercise, you shall see how this works.

Our first step is to restate the Ward Identities in terms of the one-particle-irreducible

(1PI) amplitudes. For the all–vector amplitudes

1PI

V1V2

V3 Vn

=

∫

d4θ iV1PI
n (V1, . . . , Vn)

→ 0 when any Vi = Λ or Vi = Λ,

(8)

while the two-scalars-plus–n–vectors amplitudes

ΦΦ

1PI

V1
V2 Vn

=

∫

d4θ i(2q)nΦΓn(V1, . . . , Vn) Φ (9)

satisfy

Γ1(V = Λ) = (1 + Γ0)× Λ, Γ1(V = Λ) = Λ× (1 + Γ0), (10)

and for n > 1

Γn(V1, . . . , Vn−1,Λ) = Γn−1(V1, . . . , Vn−1)× Λ,

Γn(V1, . . . , Vn−1,Λ) = Λ× Γn−1(V1, . . . , Vn−1).
(11)

Note that the 1 + Γ0 combination in eq. (10) is related to the dressed chiral propagator

≡ M0 =
1

1 + Γ0(p)
×

iD2D
2

16p2
. (12)

(a) Use the identities (4) and (7) from problem 1 to prove the relations (8), (10), and

(11). Note: (8) is trivial and (10) is easy but (11) takes work.
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(b) In the previous homework (set #3, problem 3) we saw that all the 1PI amplitudes

Γn have logarithmic divergences (superficial degree of divergence = 0). Use eqs. (10)

and (11) to show that all these divergences have exactly the same coefficient δZ , thus

Γn(V1, . . . , Vn) = δZ × V1 · · ·Vn + finite, (13)

hence
∞
∑

n=1

(2q)n

n!
Γn(V, . . . , V ) = δZ × exp(2qV ) + finite (14)

and the renormalized SQED Lagrangian terms for the charged fields

L
ren

⊃

∫

d4θ (1 + δZ)×
(

Ae+2VA + B e−2V B
)

(15)

have exactly the same gauge symmetry as in the classical Lagrangian.

Now consider the 1PI amplitudes (7) for n vectors and no external charged fields. By

the charge conjugation A ↔ B, V → −V , all the amplitudes with odd n vanish, so let’s

consider the even n only.

(c) Use eq. (8) to show that the all-vector amplitudes V1PI
n must involve several spinor

derivatives Dα and D
α̇
. The number of such derivatives should be at least 4 for n = 2

vectors and more (than 4) for n = 4, 6, 8, . . ..

In the previous homework (set #3, problem 3) we saw that all the n=vector amplitudes

without external charged legs have superficial degree of divergence = 2. However, if such

amplitudes involve spinor derivatives acting on the external vector legs, then the actual

degree of divergence must be lower.

(d) Explain why this should be true, then use (c) to show that the V1PI
2 diverges loga-

rithmically rather than quadratically while the multi-vector 1PI amplitudes do not

diverge at all.

(e) Finally, show that to all orders of the perturbation theory,

V2 =
(

1 + δ3 + finite
)

× V
DαD

2
Dα

8
V (16)
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and hence the renormalized Lagrangian for the vector superfield is simply

L
ren
V =

∫

d4θ (g−2 + δ3)× V
DαD

2
Dα

8
V ≡ (g−2 + δ3)×L

tree
V . (17)

Note: together, eqs. (15) and (17) prove that in the superspace, SQED is renormalizable

despite having an infinite number of vertex types.
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