PHY-396 T. Problem set #9. Due November 10, 2009.

. The first two problems are about SQCD with N. = N colors and massless Ny = N + 1

flavors. Let’s start with the classical moduli space of this theory.
(a) Show that the classical moduli space has NJ% complex dimensions.

The holomorphic gauge invariants of the quark Q}i and antiquark @ f,¢ chiral superfields

include

mesons My = @JQCQ?/ :

1 L
baryons Bf = mdﬂfl fNECyucQO;l T Q?]]\\[l ) (1)
~ 1 - -
and antibaryons Bf = mEffl...fNECl“'CNthCI - Qpyey -

But these invariants are not independent:

(b) Show that classically, the invariants (1) satisfy several constraints, namely

det(M) = 0, M;pB" =0, B'Msp =0, minor(M)" = BB (2)

(c) Show that the space of mesons, baryons, and antibaryons which satisfy these con-
straints has precisely NJ% dimensions. Consequently, it may be identified with the

classical moduli space of the SQCD with Ny = N, + 1.

In the low-energy effective theory for the moduli superfields we may treat the moduli M ¢/,
B, B/ as independent superfields,

Lon =/d4eK<M,B,B“;M,B, ) +/d29W<M,B,E> + He, )

but the VEVs (M), (B), <l§> must satisfy constraints 0W/0(any modulus) = 0.

(d) Show that constraints on the mesonic and baryonic VEVs due to effective superpoten-

tial

Wiree = C (gf/\/lff/Bf — det(M)) , C = const (4)

are precisely the classical constraints (2).

Note: C has dimension 1 — 2N, so we expect C' = A=2Ne x a numerical constant.



* In the chiral ring language, M, B/, and B/ are generators of the SQCD’s off-shell
chiral ring and eqs. (2) are operatorial identities for those generators. In the low-
energy effective field theory, there are no operatorial identities; instead, egs. (2) are
the on-shell chiral ring equations which follow from the superpotential (4). Thus, the

off-shell chiral ring of SQCD becomes the on-shell chiral ring of the effective theory.

To study the quantum corrections to the superpotential (4) — and hence to the complex

structure of the moduli space — consider the flavor symmetries of the SQCD,

Gp = SU(Ny)L x SUNg)r x U(L)p x U(1)a x U(1)R (5)

(e) Describe how all these symmetries act on the moduli fields M s, B/, and B! and on
the A3Ne= s,
Note: The U(1)4 and the U(1)r symmetries are anomalous, but the appropriate
adjustment of the © angle — and hence on the ANe=Nr o exp(—872f,) — would

cancel the anomaly.

The exact superpotential W (M, B, B: : A3Ne=Ns) for the moduli fields of the quantum theory

must be invariant under all the flavor symmetries (5).

(f) Show that this implies
WM, B, B; A3Ne=Nr) = AL=2Ne o | <<B’f M ff,zsf’) ,det(M)) (6)
where F(z,y) is a holomorphic homogeneous function of degree 1, i.e., F(azx,ay) =
aF(x,y).

Note that the classical effective superpotential (4) is indeed of the form (6) for F(z,y) =

x — y, provided we identify the overall coefficient C' as A =2Ne.

In general, the quantum corrections due to instantons or other non-perturbative effects
should carry higher powers of the A3Ne="s than the classical superpotential. But for the
superpotential (6), the power of A is completely fixed by the R-symmetry, which means

that there are no non-perturbative corrections at all! Instead
WM, B, B AN — Wiee + 0 = A7 (B MypB! — det(M)),  (7)

and there are no quantum corrections to the classical constraints (2).



2. The classical moduli space of SQCD with Ny = N, +1 has a singular point (Q) = <@> =0
where none of the symmetries are broken. In problem 1 we saw that the quantum moduli
space of the theory has the same complex structure, so it has a similar singular point
M = B = B = 0 where all the flavor symmetries remain unbroken despite the color
confinement. Or rather, all the flavor symmetries free from the color (CCF) anomalies

remain unbroken.

(a) Show that a combination of the axial symmetry U(1)4 and the R—symmetry U(1)r

which acts on the quarks, antiquarks, gluinos, and their superpartners as

A eip)\oz’ Ue efi(Nc/Nf)plI,a’ {I}a N efi(Nc/Nf)pCI}a,

. - L (8)
AR AR Q = eZP/NfQ7 Q _>ezp/NfQ

is free from the color anomaly. Consequently, the net color-anomaly-free flavor sym-

metry is

Gt = SU(Np)L % SUNp)R x U(1)p x U(1)ga (9)

where U(1)p is the vector-like baryon number and U(1)r4 is the symmetry (8).

At the singular point of the moduli space, the entire flavor symmetry (9) of SQCD remains
unbroken, which calls for 't Hoof’s anomaly matching condition between the elementary
and composite fermions. The elementary fermions here are the quarks, the antiquarks, and

the gluinos, while the massless composite fermions are the fermionic superpartners of the

massless moduli M, B/, and B/

(b) In the effective theory of the NJ% + 2Ny chiral superfields M, B!, B!, at a generic
point of the moduli space, the superpotential (7) makes 2Ny superfields massive while
the remaining NJ% remain massless. But at the singular point M =B = B= 0, all the
NJ% + 2Ny superfields remain massless and their fermionic components contribute to

the flavor anomalies. Prove this.

(c) List the flavor (9) quantum numbers of all the massless composite fermions. For

comparison, list the flavor and color quantum numbers of the elementary fermions.

(d) And now comes the hard part: Calculate all the non-trivial flavor anomalies tr(F') and

tr(F{F’, F"}) over the elementary fermions and over the massless composite fermions



and verify that in all cases

treom(F) = treomp(F),  traem(F{F', F"}) = treomp(F{F', F"}) VE,F' F" G},
(10)

3. The last problem is about the U(N) gauge theory with a single adjoint multiplet ® of chiral
matter. We are interested in the off-shell chiral ring of the theory, which is made out of
gauge-invariant combinations of the scalar and gaugino fields — or in superfield notations,

out of ® and W chiral superfields.

In matrix notations, all such gauge invariant combinations are polynomials in the traces

of matrix products of matrix products of the & and W, matrices,
T, = tr(2F), PP = (W), RY, = t(*WWF), ete, (11

or in other words, the traces (11) generate the chiral ring of the theory.

Actually, many of the traces (11) are equivalent to each other as members of the chiral ring
because their difference is a total D” derivative of some gauge-invariant operator. Your
task is to show that the only independent generators are the Ty, P, and R = Rl?m and

there are no others.

(a) Show that for any matrix product X of & and W% matrices,
(X, @) = —1D tr(XVD) (12)

where VO® = D*® + [I'*, @] (where I'* = e72V D%?2"") is the gauge-covariant spinor

derivative, and hence

tr(XWeP) = tr(XOW?). (13)
Note that (a) allows us to re-order the Phi and W matrices in the traces (11), thus
tr(® - PW® - -- WP - .. more matrices - W) = tr(®--- & x WWF ... W7). (14)

In particular, R:i ES szz 0



(b) Now show that
w(X{We, WP = —1D° tr(Xvew?) (15)
and hence

tr(QFWOWF) E P (P WIW?) = Le*f x Ry (16)

(c) Finally, show that all traces including 3 or more gaugino fields W are equivalent to

Zero,

tr(@FWOWPIWT L) = 0. (17)
Thus, the only independent generators of the chiral ring are the
T, = t(®"), P¢ = (W), and Ry = tr(®"WW,). (18)

Moreover, for finite N, the traces involving more then N ® matrices are polynomial func-

tions of the traces with fewer ®’s. For example, for N = 2

213 = 3Ty — T},
OPy = P X Ty + PYx Ty — P x (TF — T)Ty, (19)
2R3 = Rox 11 + Ry x1T5 — Ry X (Tll—TQ)Tl,

and similar (but more complicated) relations for £k = 4,5,.... In general, such relations

are corrected by the instanton effects, but that goes beyond the scope of this exercise.



