General Relativity

Richard Matzner University of Texas at Austin

Maxwell: EM waves with velocity $\mathrm{c}=299792458 \mathrm{~m} / \mathrm{sec}$

- Einstein: c with respect to what?
- Every observer measures the same speed!
- All observers see the same laws of physics!

"Light Clock"

Symmetry Requires

"d" Is Same For Both clocks

- these
situations depend on who is observing

Tick (up) - Tock (down)

- Tick: time at rest $=\mathrm{d} / \mathrm{c}$
- Tick: time seen from nonmoving frame for tick on moving clock $\Delta t_{M G}=\sqrt{ }\left[d^{2}+\left(v \Delta t_{M G}\right)^{2}\right] / c>$ res \dagger clock time.

Result: $\Delta t_{M G}=\Delta t_{M M} / \sqrt{ }\left[1-(v / c)^{2}\right]$

- Time dilation is real
- applies to all clocks (including biological) - twin paradox

Length Contraction:

length $_{M G}=\sqrt{ }\left[1-(v / c)^{2}\right]$ length $_{M M}$

Lorentz Transformations

By looking for a transformation from one frame to another, with the requirement that the Maxwell equations have identically the same forms, Einstein found the following way to relate measurements by an observer in one coordinate frame to measurements by an observer in another frame ---

Two Observers with Personal Reference "Frames"

Galilean Transformations

$$
\begin{aligned}
& x^{\prime}=[x-(v / c) c t] \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& c t^{\prime}=[c t]
\end{aligned}
$$

Lorentz Transformations

$$
\begin{gathered}
x^{\prime}=y[x-(v / c) c t] \\
y^{\prime}=y \\
z^{\prime}=z \\
c t^{\prime}=y[c t-(v / c) x]
\end{gathered}
$$

where

$$
\mathrm{V}=1 / \sqrt{ }\left[1-(\mathrm{V} / \mathrm{c})^{2}\right]
$$

(Lorentz had discovered these transformations in a physical model of the electron in an EM field.)

Lorentz transformations

 imply time dilation and length contraction, but have dramatic new implications for causality and "spacetime" (rather than "space" and "time").
Spacetime Diagram

Using "ct" makes light path 45°

Two "observers", one

 moving

Lorentz transformations

 merge space and time into Spacetime!$$
\begin{gathered}
x^{\prime}=y[x-(v / c) c t] \\
y^{\prime}=y \\
z^{\prime}=z \\
c t^{\prime}=y[c t-(v / c) x]
\end{gathered}
$$

Simultaneity is Relative!

Observational status: twin paradox

```
Science 14 July 1972:
Vol. 177. no. 4044, pp. 168-170
DOI: 10.1126/science.177.4044.168
ARTICLES
Around-the-World Atomic Clocks: Observed Relativistic Time Gains
J. C. Hafele }\mp@subsup{}{}{1}\mathrm{ and Richard E. Keating }\mp@subsup{}{}{2
1 Department of Physics, Washington University, St. Louis, Missouri }6313
2 Time Service Division, U.S. Naval Observatory, Washington, D.C. }2039
```

"These results provide an unambiguous empirical resolution of the famous clock "paradox" with macroscopic clocks."

Time dilation: muons

- rest half life $1.6 \times 10^{-6} \mathrm{sec}$
- produced at 10 km height, velocity $\mathrm{v}=0.98 \mathrm{c}$
$10 \mathrm{~km} /\left(3 \times 10^{5} \mathrm{~km} / \mathrm{sec}\right) \approx 3.3 \times 10^{-5} \mathrm{sec} \approx 20$ half lives
$2^{-20} \approx 0.3 \times 10^{-6}$: practically no muons should reach the earth. But they are detected!

The reason:Time dilation

Time dilation: muons

$$
v=0.98 \Rightarrow \gamma \approx 5
$$

. munr cloquatmunning 5 times slower!

- trip takes muon only $20 / 5=4$ half 2-4 dive. $06: 1 / 16$ of muons reach the earth. No wonder they are detected!

Length contraction: muons

$$
v=0.98 \Rightarrow \gamma \approx 5
$$

The muon sees itself at rest, earth speeding upward at 0.98c. Thus the muon - earth distance at the start is contracted :

$$
D \sqrt{ }\left[1-(v / c)^{2}\right]
$$

Distance $=10 \mathrm{~km} \times \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]$

$$
=10 \mathrm{~km} / \mathrm{Y}=2 \mathrm{~km}
$$

Length contraction: muons

$$
v=0.98 \Rightarrow \gamma \approx 5
$$

$2 \mathrm{~km} /\left(3 \times 10^{5} \mathrm{~km} / \mathrm{sec}\right) \approx 6.6 \times 10^{-6} \mathrm{sec} \approx 4$ half lives
Same result as computed in Earth frame!
$2^{-4} \approx 0.06: 1 / 16$ of muons reach the earth.

Other well known

 implications
(derivations omitted)

$$
E=m c^{2}
$$

Energy and mass are interchangeable!

$$
\mathrm{m}=\mathrm{\gamma} \mathrm{~m}_{0}=\mathrm{m}_{0} / \sqrt{ }\left[1-(\mathrm{v} / \mathrm{c})^{2}\right]
$$ Mass of a moving object increases

$$
E=m_{0} c^{2}+K E
$$

Energy equivalent of mass increase is Kinetic Energy

General Relativity

Einstein's Description of Gravity

- fully Geometric formulation
- replaces Newton's gravitational Force

Basic motivation:
Equivalence Principle

Newtonian Equivalence Principle

Everything falls under gravity with the same acceleration!

inertial mass = (passive) gravitational mass

Different from E\&M Practical effect: Einstein Elevator

Why is this true? (Theoretical Question)

Newton: because $m_{i}=m_{g}$
Einstein: Because objects are following the same path in curved spacetime

Gravity is Curvature!

Curvature determines orbits

Newtonian orbits follow from Relativistic calculations

- Einstein equation computes curvature from matter source (e.g. sun)
- curvature determines path of particle (e.g. Earth) (another equation)

For Weak Fields GR Equations very similar to Newtonian

-Einstein equation very similar to Newtonian definition of Gravitational field - Motion of object (e.g. planet around the Sun) very similar to Newtonian motion

Subtle GR Effects in Solar System

Solar gravitational field: 10^{-6}

- Small precession of perihelion of planets $\approx 42^{\prime \prime}$ per century
.Small deflection of light $\approx 10^{-6}$ radians $\approx 1^{\prime \prime} .75$

Strong/Big Fields Produce Big Effects

Strong Fields: Binary Black Holes in Orbit

Orbiting strong curvature

Strong Astrophysical source of Gravitational waves

Gravitational Waves and Detector

Strong Field Production of Gravitational Waves

Gravitational Radiation

Source: Bulk Motion
Produces Changing Tidal Field

Oscillating Tidal Field
Propagates (Unobstructed) to Observer

Observer Detects Distortion Strain

What Gravitational Radiation Does

Wave moving into page ...

produces oscillatory transverse distortion. One transverse direction lengthens while the other shrinks. Then reverses.

Interferometer- Arm length difference changes light at detector

path difference \rightarrow phase difference \rightarrow interference

Interferometer Detector (LIGO)

As wave enters from top: This arm squeezed

this arm stretched
Photodetector
Oscillating difference in lengths causes phase difference in arms, interference changes light intensity at the photodetector

LIGO: Interferometer detector

LIGO has sites in Lousisiana
(4 km detector) and in
Washinton state
(4 km and 2 km detectors)

No detections so far, but...

L/GO is being

upgraded to examine 1000 x the volume!

