Mirrors and Images

Plane mirrors

Image in a mirror:

Same image from many points of view:

Ray geometry and distances from the mirror:

Since the angle of reflection is always equal to the angle of incidence, all the angles here denoted by α are equal to each other. Consequently, the distance d_{i} between the image and the mirror is equal to the distance d_{o} between the mirror and the object. Indeed, simple trigonometry for the point $(0, y)$ where the ray is reflected off the mirror gives us two equations:

$$
\begin{equation*}
y=d_{0} \times \tan \alpha=d_{i} \times \tan \alpha \tag{1}
\end{equation*}
$$

and since they both hold for the same angle α, we must have

$$
\begin{equation*}
d_{i}=d_{0} \quad \text { for a plane mirror. } \tag{2}
\end{equation*}
$$

However, this simple formula does not work for curved mirrors. Instead, the image in a convex mirror is closer than the object, while the image in a concave mirror is more distant than the object:

$$
\begin{aligned}
& d_{i}<d_{o} \text { for a convex mirror, } \\
& d_{i}>d_{o} \text { for a concave mirror. }
\end{aligned}
$$

Convex Mirror

Here is the ray diagram for a convex mirror:

And here is the detailed geometry for one particular ray

On this diagram, α is the angle of incidence $=$ angle of reflection and γ is the angle between the mirror's surface and the y axis. Because of $\gamma \neq 0$ for a curved mirror, the angle between the incident ray and the x axis is $\alpha-\gamma$ instead of α, while the angle between the x axis and the reflected ray is $\alpha+\gamma$. Consequently, for this ray geometry

$$
\begin{align*}
\tan (\alpha-\gamma) & =\frac{y}{d_{o}+x} \\
\tan (\alpha+\gamma) & =\frac{y}{d_{i}-x} \tag{3}\\
\sin \gamma & =\frac{y}{R}
\end{align*}
$$

where (x, y) are the coordinates of the point where the ray is reflected off the mirror and R is the mirror's radius of curvature. For small y - and hence $x \approx 0$ and small angles - we may approximate

$$
\begin{align*}
\alpha-\gamma & \approx \tan (\alpha-\gamma)=\frac{y}{d_{o}+x} \approx \frac{y}{d_{o}} \\
\alpha+\gamma & \approx \tan (\alpha+\gamma)=\frac{y}{d_{i}-x} \approx \frac{y}{d_{i}} \tag{4}\\
\gamma & \approx \sin \gamma=\frac{y}{R}
\end{align*}
$$

Combining these 3 equations, we have

$$
\begin{equation*}
\frac{y}{d_{i}}-\frac{y}{d_{o}} \approx(\alpha+\gamma)-(\alpha-\gamma)=2 \gamma \approx 2 \times \frac{y}{R} \tag{5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{1}{d_{i}}-\frac{1}{d_{r}}=\frac{2}{R} \tag{6}
\end{equation*}
$$

regardless of y. Note that according to this formula $\left(1 / d_{i}\right)>\left(1 / d_{r}\right)$ and hence $d_{i}<d_{r}$: The image in a convex mirror is closer to the mirror than the original object. Moreover, eq. (6) tells us the exact image location of any object, namely

$$
\begin{equation*}
d_{i}=1 /\left(\frac{1}{d_{r}}+\frac{2}{R}\right) . \tag{7}
\end{equation*}
$$

Concave Mirror

For a concave mirror we have a reverse situation: the image is further away from the mirror that the object. Indeed, here is the ray diagram for a concave mirror:

And here is the detailed geometry for one particular ray

Again, α is the angle of incidence $=$ angle of reflection and γ is the angle between the mirror's
surface and the y axis. But now the mirror is curving in the other direction, so the angle between the incident ray and the x axis is $\alpha+\gamma$ while the angle between the x axis and the reflected ray is $\alpha-\gamma$. Consequently, for this ray geometry

$$
\begin{align*}
\tan (\alpha+\gamma) & =\frac{y}{d_{o}+x} \\
\tan (\alpha-\gamma) & =\frac{y}{d_{i}-x} \tag{8}\\
\sin \gamma & =\frac{y}{R}
\end{align*}
$$

where similar to the convex case, (x, y) are the coordinates of the point where the ray is reflected off the mirror and R is the mirror's radius of curvature. For small y - and hence $x \approx 0$ and small angles - we approximate

$$
\begin{align*}
\alpha+\gamma & \approx \tan (\alpha+\gamma)=\frac{y}{d_{o}+x} \approx \frac{y}{d_{o}} \\
\alpha-\gamma & \approx \tan (\alpha-\gamma)=\frac{y}{d_{i}-x} \approx \frac{y}{d_{i}} \tag{9}\\
\gamma & \approx \sin \gamma=\frac{y}{R}
\end{align*}
$$

This time, combining these 3 equations gives us

$$
\begin{equation*}
\frac{y}{d_{o}}-\frac{y}{d_{i}} \approx(\alpha+\gamma)-(\alpha-\gamma)=2 \gamma \approx 2 \times \frac{y}{R} \tag{10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{1}{d_{o}}-\frac{1}{d_{i}}=\frac{2}{R} \tag{11}
\end{equation*}
$$

regardless of y. Note that this formula for the concave mirror implies $\left(1 / d_{o}\right)>\left(1 / d_{i}\right)$ and hence $d_{o}<d_{i}$: The image in a concave mirror is further away to the mirror than the original object. Specifically, the image of an object at distance d_{o} from the mirror is located at distance

$$
\begin{equation*}
d_{i}=1 /\left(\frac{1}{d_{o}}-\frac{2}{R}\right) . \tag{12}
\end{equation*}
$$

Virtual and Real Images

Thus far, in all the ray diagrams the image was always behind the mirror. Such images are called virtual because the light rays do not really go behind the mirror, they just seem like they come from there. In contrast, a real image would appear in front of the mirror and the light rays would actually go through it. If you put a piece of paper into a real image of something very hot - the Sun, or an electric arc - the paper would burn. In comparison, a virtual image cannot burn or do anything at all to a paper you bring into it; all you can do with a virtual image is to look at it through the mirror.

The plane and the convex mirrors can make only virtual images, but a concave mirror can make both virtual or real images. The type of the image depends on the distance between the object and the mirror: Objects at distances closer than $R / 2$ have virtual images behind the mirror while objects further away than $R / 2$ have real images in from of the mirror. Indeed, the diagram on the previous page shows a virtual image that obtains for positive angle $\alpha-\gamma$. Mathematically,

$$
\begin{equation*}
\alpha-\gamma>0 \Longleftrightarrow(\alpha+\gamma)>2 \gamma \quad \Longleftrightarrow \quad \frac{y}{d_{o}}>2 \times \frac{y}{R} \quad \Longleftrightarrow \quad d_{o}<\frac{1}{2} R \tag{13}
\end{equation*}
$$

which means that to get the virtual image we need $d_{o}<\frac{1}{2} R$. But when an object is further away from the mirror than $\frac{1}{2} R$ we get $\alpha-\gamma<0$, which means that the reflected rays go back to the x axis rather than away from it, and when they all cross each other at some distance d_{i} in front of the mirror, they make a real image:

To find the location of the real image, let's focus on just two rays: one ray going back and forth along the x axis, and one off-axis ray with non-zero α and γ angles:

Applying trigonometry to this picture, we have

$$
\begin{equation*}
\tan (\gamma+\alpha)=\frac{y}{d_{o}-x} \approx \frac{y}{d_{o}}, \quad \tan (\gamma-\alpha)=\frac{y}{d_{i}-x} \approx \frac{y}{d_{i}}, \quad \sin \gamma=\frac{y}{R} \tag{14}
\end{equation*}
$$

When y is small - and hence all the angles are small - we may approximate

$$
\begin{equation*}
\tan (\gamma+\alpha) \approx(\gamma+\alpha), \quad \tan (\gamma-\alpha) \approx(\gamma-\alpha), \quad \sin \gamma \approx \gamma \tag{15}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
\gamma+\alpha \approx \frac{y}{d_{o}}, \quad \gamma-\alpha \approx \frac{y}{d_{i}}, \quad \gamma \approx \frac{y}{R} \tag{16}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{y}{d_{o}}+\frac{y}{d_{i}} \approx(\gamma+\alpha)+(\gamma-\alpha)=2 \gamma \approx 2 \times \frac{y}{R} \tag{17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{2}{R} \tag{18}
\end{equation*}
$$

Thus, an object at distance $d_{o}>\frac{1}{2} R$ from a concave mirror has a real image in front of the mirror at distance

$$
\begin{equation*}
d_{i}=1 /\left(\frac{2}{R}-\frac{1}{d_{o}}\right) . \tag{19}
\end{equation*}
$$

When the object gets further and further away from a concave mirror, its real image gets closer and closer. For very distant objects - such as starts - the light rays reaching the
mirror are essentially parallel. When the reflect off a concave mirror, these rays intersect at the point called the focus:

The distance between the focus and the mirror - called the focal distance is simply

$$
\begin{equation*}
f=\frac{R}{2} \tag{20}
\end{equation*}
$$

If the rays come from a very hot object - like the Sun - its real image in the focus gets so hot you can burn things with it!

