
PHY–309 L. Solutions for Midterm Test # 3.

Problem #1:

When a light ray goes from one transparent medium to another — for example, from air to

glass, or from glass to air — its direction changes according to the Snell’s Law of Refraction

α1

α2

n1

n1

n1 × sinα1 = n2 × sinα2 . (1)

Here n1 and n2 are the refraction indices of the two media, α1 is the angle of incidence, α2 is

the angle of refraction, and both angles are counted from the perpendicular to the boundary.

The light ray in question crosses two interfaces, first from the air to the glass, and then

from the glass back to the air. At the first interface, the ray comes in ⊥ to the air-glass

boundary — i.e., at zero incidence angle. Consequently, the angle of refraction must also

be zero, which means that the ray continues into the glass along the same direction — ⊥ to

the boundary.

In a prism, the second air-glass boundary is tilted relative to the first boundary; for

the prism in question, the tilt angle is 30◦. Consequently, the ray approaches the second

interface at incidence angle α1 = 30◦ as shown on the following diagram:

30◦

60◦

α1
= 30

◦

α2
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This time, the ray does change direction. To find the angle of refraction α2, we use the

Snell’s Law (1) for refraction from the glass into the air, thus

n1 = nglass = 1.6 and n2 = nair ≈ 1. (2)

Hence,

sinα2 =
n1
n2

× sinα1 =
1.6

1
× sin 30◦ = 0.8 (3)

and α1 = arcsin(0.8) ≈ 53◦.

Note that since the ray goes from the glass to the air we have n2 < n1 and consequently

α2 > α1 — the refraction angle is large than the incidence angle. This means that the light

ray bends away from the perpendicular, i.e., the ray bends down. The bending angle θ is the

difference α2 − α1, which should be obvious from the following diagram:

α1

α1 α2

θ = α2 − α1

Numerically,

θ = α2 − α1 = 53◦ − 30◦ = 23◦. (4)

So here is the bottom line: The light ray bends 23◦ down.

Problem #2:

(a) Note: the image is behind the lens, i.e., on the same side of the lens as the object, so this

image must be virtual rather than real. The distance to a virtual image depends on a type
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of lens: Positive lenses make virtual images more distant then their objects,

1

di
=

1

do
−

1

f
<

1

do
=⇒ di > do , (5)

while negative lenses make virtual image closer then the objects,

1

di
=

1

do
+

1

|f |
>

1

do
=⇒ di < do . (6)

The virtual image in question is closer to the lens than the object — (di = 20 cm) < (do =

30 cm) — so the lens must be negative.

A negative lens is thinner in the middle than near the edges, for example

or

(b) The focal length of the negative lens follows from eq. (6) and known distances do to the

object and di to the image:

1

di
=

1

do
+

1

|f |
,

1

|f |
=

1

di
−

1

do
,

|f | =
di × do
do − di

=
(20 cm)× (30 cm)

(30 cm) − (20 cm)

= 60 cm.

(7)

By convention, focal length of a negative lens is written as a negative number, so the lens in

question has focal length f = −60 cm.
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However, I will not take any points off for ignoring this convention. Students that have

answered this question as simply f = 60 cm — without the sign — will get full credit for

this part of the problem.

(c) Since the ray that goes through the center of the lens is not refracted, the magnification

of a virtual image is simply

m
def
=

hi
ho

=
di
do

. (8)

In particular, the image in question has magnification

m =
di
do

=
20 cm

30 cm
=

2

3
. (9)

Problem #3:

In any radioactive decay, the fraction of atoms surviving after time t decreases exponentially

as

N(t)

N0
= 2−t/T (10)

where T is the half-life time of the isotope in question. Note that different isotopes have very

different half-life times, which range from microseconds to billions of years. In particular,

the half-life time of uranium-235 is 6 times shorter than that of uranium-238.

(a) The age of the Earth — 4500 million years — happens to be close to the half-life time

of the
238

U isotope. During this time, 1
2
of the original

238
U atoms have decayed while the

other 1
2 is still with us today. This means that for every

238
U atom the Earth has today,

there were 2 such atoms when the Earth was formed.

(b) The
235

U isotope has a shorter half-life time T = 750 million years, or 1/6 of the Earth’s

age t = 4500 million years. Hence, the fraction of original
235

U atoms that survive till today

is only

N(t)

N0
= 2−t/T = 2−6 =

1

26
=

1

64
. (11)

In other words, only 1 in 64 original
235

U atoms has survived till today, which means that

for each
235

U atom the Earth has now, it had 64 such atoms when it was formed.
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(c) In parts (a) and (b) we saw that the surviving fractions of
235

U and
238

U are rather

different:

Ntoday

(

238
U
)

=
1

2
N⊕ formation

(

238
U
)

while Ntoday

(

235
U
)

=
1

64
N⊕ formation

(

235
U
)

.

(12)

Consequently, the isotope ratio today is quite different than when the Earth was formed:

Ntoday

(

235
U
)

Ntoday

(

238
U
) =

1
64
N⊕ formation

(

235
U
)

1
2
N⊕ formation

(

238
U
) =

2

64
×

N⊕ formation

(

235
U
)

N⊕ formation

(

238
U
) . (13)

Today,

Ntoday

(

235
U
)

Ntoday

(

238
U
) =

1

138
, (14)

but when the Earth was formed 4500 million years ago, the ratio was

N⊕ formation

(

235
U
)

N⊕ formation

(

238
U
) =

64

2
×

Ntoday

(

235
U
)

Ntoday

(

238
U
) =

64

276
, (15)

i.e., for every 64 atoms of
235

U there were 280 atoms of
238

U.

In terms of isotope fractions of natural uranium as it existed 4500 million years ago,

fraction
(

235
U
)

=
64

64 + 276
= 18.8%,

fraction
(

238
U
)

=
280

64 + 276
= 81.2%.

(16)
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PS: The half-life times used in this problem were rounded to simplify your calculations.

In reality,
238

U has half-life time T238 = 4468 million years, while
235

U has half-life time

T235 = 704 million years. Also, the age of Earth is about t = 4540 million years.

For these more accurate numbers, t/T238 = 1.016, so the surviving fraction of the original
238

U atoms is

Ntoday

(

238
U
)

N⊕ formation

(

238
U
) = 2−t/T238 = 0.4944 =

1

2.022
. (17)

Likewise, t/T235 = 6.449, so the surviving fraction of the original
235

U atoms is

Ntoday

(

235
U
)

N⊕ formation

(

235
U
) = 2−t/T235 = 0.011447 =

1

87.36
. (18)

Finally, the uranium isotope ratio when the Earth was formed was

N⊕ formation

(

235
U
)

N⊕ formation

(

238
U
) =

87.36

2.022
×

Ntoday

(

235
U
)

Ntoday

(

238
U
) = 0.313 ≈

5

16
, (19)

i.e., for each 5 atoms of
235

U there were 16 atoms of
238

U. In terms of isotope fractions of

natural uranium as it was when the Earth was formed,

fraction
(

235
U
)

=
5

5 + 16
= 23.9%,

fraction
(

238
U
)

=
16

5 + 16
= 76.1%.

(20)

Problem #4:

(a) The decay chain (1) spells out the atomic numbers of all the isotopes but not their mass

numbers. The atomic number Z is the number of protons in the nucleus and also the number

of electrons in the neutral atom. In an α decay Z decreases by 2 because an α particle carries

away 2 of the protons. In a β decay, Z increases by 1 because one of the neurons turns into
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a proton (plus an electron and anti-neutrino that fly away). In a γ decay Z does not change.

This gives us a simple rule for distinguishing different decay types: Take the difference ∆Z

between the mother and daughter nuclei and look it up in the following table:

∆Z = −2: α decay,

∆Z = +1: β decay,

∆Z = 0: γ decay,

other ∆Z: other type of decay, not studied in this class.

(21)

Thus, for the decay chain in question, we have

235

92
U →

???

90
Th ∆Z = −2: α decay,

???

90
Th →

???

91
Pa ∆Z = +1: β decay,

???

91
Pa →

???

89
Ac ∆Z = −2: α decay,

???

89
Ac →

???

90
Th ∆Z = +1: β decay,

???

90
Th →

???

88
Ra ∆Z = −2: α decay,

???

88
Ra →

???

86
Rn ∆Z = −2: α decay,

???

86
Rn →

???

84
Po ∆Z = −2: α decay,

???

84
Po →

???

82
Pb ∆Z = −2: α decay,

???

82
Pb →

???

83
Bi ∆Z = +1: β decay,

???

83
Bi →

???

81
Tl ∆Z = −2: α decay,

???

81
Tl →

207

82
Pb ∆Z = +1: β decay.

(b) An α decay decreases the mass number A of an isotope by 4 because the α particle

carries away 4 nucleons (2 protons and 2 neutrons). A β decay does not change the mass

number: while a neutron turns into a proton, the net number of nucleons does not change.

Likewise, a γ decay does not change the mass number of the isotope.

For the decay chain in question, we know the initial mass number, and we have found (in

part (a)) which decays are α and which are β. To find the mass numbers of all the isotopes

involves, we simply follows the chain: for an α decay A decreases by 4 while for a β decay
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A stays unchanged. In this way, we obtain

235

92
U

α
→

231

90
Th

β
→

231

91
Pa

α
→

227

89
Ac

β
→

227

90
Th

α
→

223

88
Ra

α
→

α
→

219

86
Rn

α
→

215

84
Po

α
→

211

82
Pb

β
→

211

83
Bi

α
→

207

81
Tl

β
→

207

82
Pb.

(22)

Problem #5:

The positron and the electron have net mass 2me. When they annihilate, all of this mass is

converted to energy

E = 2me × c2 = 2(9.11 · 10−31 kg)× (3.00 · 108 m/s) = 1.640 · 10−13 J. (23)

This energy is carried away by two photons. Assuming equal division of net energy between

the photons,
⋆
each photons has

Eγ = 1
2Enet mec

2 = 8.20 · 10−14 J. (24)

According to Planck’s formula, photon energy is related to the electromagnetic wave’s

frequency f as Eγ = h × f where h is the Planck’s constant. For the energy (24), the

frequency is

f =
Eγ

h
=

8.20 · 10−14 J

6.63 · 10−34 J · s
= 1.24 · 1020 Hz (25)

and hence the wavelength is

λ =
c

f
=

3.00 · 108 m/s

1.24 · 1020 Hz
= 2.42 · 10−12 m. (26)

⋆ Actually, the 2 final photons always have equal energies when the initial positron and electron are at
rest. Indeed, by momentum conservation

~p(γ#1) + ~p(γ#2) = ~p(e+) + ~p(e−) = ~0,

which means that the two photons should have equal but opposite momenta. But the momentum of
a photon is related to its energy as E = |~p| × c, so equal momenta of the two photons imply equal
energies.

8


