
PHY–302 K. Solutions for mid-term test #3.

Problem 1:

Out in space, there are no forces acting on the balloon except gravity and hence no torques

(with respect to an axis through the center of mass). Consequently, the angular momentum

of the balloon is conserved,

L = I × ω = const. (S.1)

The angular momentum of the balloon depends on its radius; approximating the balloon as

a thin spherical shell of uniform density and thickness, we have

I = 2
3
MR2. (S.2)

When the balloon shrinks (because the air inside it cools down), the moment of inertia

decreases,

I = 2
3
M × R2 to I ′ = 2

3
M ′

× R′2; (S.3)

specifically,

I ′

I
=

(

R′

R

)2

=

(

1 ft

2 ft

)2

=
1

4
. (S.4)

But the angular momentum of the balloon is conserved,

L = I × ω = I ′ × ω′. (S.5)

Thus, when the moment of inertia decreases, the angular velocity must increase to keep the

angular momentum constant; specifically

ω′

ω
=

I

I ′
= 4. (S.6)

Consequently, the rotational period of the balloon — the time

T =
2π

ω
(S.7)
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it takes to make one complete turn around its spin axis — decreases as

T ′

T
=

ω

ω′
=

1

4
. (S.8)

Thus, if the balloon had originally rotated once every T = 40 s, then after it has cooled

down, it was rotating 4 times faster, once every T ′ = T/4 = 10 s.

Problem 2:

There are three forces acting on the meter-stick: the tension T of the upper string, the

tension T ′ = mg (where m = 50 g) of the lower string, and the meter-stick’s own weight

Mg. Here is the force diagram:

10 40 50

CM

T ′ = mg
Mg

T

Although the weight force Mg is distributed all over the meter-stick, for the purpose of

calculating torques, we treat it as acting at the center of mass, and that’s what the diagram

shows. By symmetry, the center of mass is in the middle of the meter-stick, at the 50 cm

mark.

The meter-stick is in equilibrium, so the net force and the net torque on it must be zero,

∑

F = 0,
∑

τ = 0. (S.9)

In the torque condition, we may calculate the torques relative to any pivot point we like

(as long as it’s the same point for all the forces), so let’s consider the net torque relative

to the 40 cm mark where the upper string is attached. With this choice, the tension T of

the upper string has zero lever arm, the tension T ′ = mg of the lower string has lever arm
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40 cm− 10 cm = 30 cm in the counterclockwise direction, and the meter-stick’s own weight

Mg has lever arm 50 cm− 40 cm = 10 cm in the clockwise direction. Consequently, the net

torque is

τnet ≡ τ(T ) + τ(mg) + τ(Mg) = 0 − mg × 30cm + Mg × 10cm. (S.10)

Demanding that this net torque vanishes, we obtain

Mg × 10cm − mg × 30cm = 0, (S.11)

and consequently the meter-stick’s mass is

M = m×
30 cm

10 cm
= m× 3 = 50 g × 3 = 150 g. (S.12)

Problem 3:

The plastic ball is in equilibrium because its weight mg is opposed by the equal buoyant

force; the real problem is figuring out the buoyant force on a body floating at the interface

of two liquids, oil and water.

Let’s go back to the origin of the Archimedes Law. When a body is immersed in a liquid,

the buoyant force on the body comes from the net force of liquid pressure from all sides of the

body. Those pressure forces act on the surface of the body and don’t care what’s inside it,

plastic, metal, air, or more liquid. Suppose there was nothing but liquid inside that surface,

same as the liquid outside it. Then this liquid would be in equilibrium, so the net buoyant

force must precisely cancel its weight, hence

FB = V ρliquidg. (S.13)

And any other body occupying the same volume instead of the liquid would feel exactly the

same buoyant force.
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Now consider the plastic ball floating at the interface of oil and water. The buoyant force

on the ball comes from pressure forces of oil and water, and those forces don’t care what’s

inside this surface, plastic or more oil and water. Suppose instead of plastic, we fill that

spherical boundary with more oil and water, oil in the top half of the ball and water in the

bottom half, so the oil/water boundary inside the sphere would be level with the boundary

outside the sphere.

Clearly, in this situation both the oil and the water would be in equilibrium. Therefore, the

net buoyant force on the spherical boundary (the red circle on the right picture) would be

equal to the net weight of oil and water inside that sphere,

F net
B = gρoil ×

Vball
2

+ gρwater ×
Vball
2

. (S.14)

And when we go back to the left picture and replace the oil and water inside the sphere with

the solid plastic, the buoyant force stays exactly the same.

If the plastic ball stays in equilibrium in the half-in-oil, half-in-water position, then the

buoyant force (S.14) on the ball is equal to the ball’s own weight,

F net
B = gm = gρplastic × Vball . (S.15)

In light of eq. (S.14), this gives us

gρoil ×
Vball
2

+ gρwater ×
Vball
2

= gρplastic × Vball . (S.16)
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Dividing both sides of this equation by gVball, we get

ρplastic =
ρoil
2

+
ρwater
2

=
0.80 g/cm3

2
+

1.00 g

2
= 0.90 g/cm3. (S.17)

PS: More generally, for a body floating at the interface of two liquids — but with more

volume immersed in one liquid that the other — the buoyant force is

F net
B = gρliquid#1 × Vin 1 + gρliquid#2 × Vin 2 . (S.18)

If that body floats in equilibrium, than its average density is

ρ̄body ≡
M

Vtotal
= ρliquid#1 ×

Vin 1
Vtotal

+ ρliquid#2 ×
Vin 2
Vtotal

. (S.19)

For example, if 3/4 of the ball’s volume were immersed in water and the remaining 1/4 of

the volume were immersed in oil, then we would have ρplastic = (3/4)ρwater + (1/4)ρoil =

0.95 g/cm3.

Problem 4:

Consider the two ends of the hot water pipe: its beginning inside the boiler (1), and its end

at the faucet’s opening (2). In the absence of viscosity, the pressures at the two ends are

related by the Bernoulli equation,

P1 + 1
2
ρv21 + ρgy1 = P2 + 1

2
ρv22 + ρgy2 . (S.20)

Since the faucet is open to the air, P2 = Patm. Consequently, the pressure difference

P1 − P2 = P1 − Patm = P gauge
1 (S.21)

is equal to the gauge pressure of water in the boiler. In light of the Bernoulli equation (S.20),

this gives us

P gauge
1 = P1 − P2 = 1

2
ρ
(

v22 − v21
)

+ ρg(y2 − y1). (S.22)

We know that the basement is 5.0 m below the faucet, thus y2− y1 = +5.0 m. But we don’t

know the velocities of water in the faucet or in the boiler. To find them out, we can use the
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continuity equation,

F = A1 × v1 = A2 × v2 (S.23)

where F is the flow rate through the pipe, A2 is the cross-sectional area of the faucet, and A1

is the cross-sectional area of the water inside the boiler. The problem gives us A2 = 1.0 cm2

and F = 1.0 L/s, so we can find the velocity of water in the faucet as

v2 =
F

A2
=

1.0 L/s = 1000 cm3/s

1.0 cm2
= 1000 cm/s = 10 m/s. (S.24)

We don’t know the cross-sectional area of the boiler, but obviously it’s much larger than the

faucet’s cross-section, A1 ≫ A2, hence

v1 =
F

A1
≪

F

A2
= v2 (S.25)

and consequently

1
2
ρ
(

v22 − v21
)

≈
1
2
ρv22 . (S.26)

Using this approximation in eq. (S.22), we get

P gauge
1 = 1

2
ρ
(

v22 − v21
)

+ ρg(y2 − y1)

≈
1
2
ρv22 + ρg(y2 − y1)

= 1
2
(1000 kg/m3)(10 m/s)2 + (1000 kg/m3)(9.8 m/s2)(5.0 m)

= 99, 000 Pa = 0.99 bar = 0.98 atm.

(S.27)

Problem 5:

(a) Using the universal gas equation

PV = nRT, (S.28)

we can find the temperature of the gas from its volume and pressure as

T =
PV

nR
=

(3.00 · 10−3 m3)(8.00 · 105 Pa)

(1 mol)(8.314 J/K/mol)
= 288.7 K. (S.29)

This is the absolute temperature of the helium gas; it translates to the everyday degrees as

15.5◦C or 60◦F.
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(b) The average kinetic energy of a gas molecule — or in our case a helium atom — is related

to the gas’s absolute temperature as

〈

1
2
mv2

〉

avg
= 3

2
kT (S.30)

where k = 1.38 · 10−23 J/K is the Boltzmann’s constant. For the helium tank in question,

〈

1
2
mv2

〉

avg
= 3

2
(1.38 · 10−23 J/K)(288.7 K) = 5.98 · 10−21 J. (S.31)

One mol of helium has N = NA = 6.022 · 1023 atoms, so their net kinetic energy is

Knet = NA ×
〈

K1 =
1
2
mv2

〉

avg
= (6.022 · 1023)× (5.98 · 10−21 J) = 3600 J. (S.32)

Alternative solution:

Actually, given the volume and the pressure of a gas, we can find the net kinetic energy of

(the linear motion of) all the molecules in the gas without knowing the temperature or the

molecular / atomic weight of the gas, or even its amount. Most generally,

〈

1
2
mv2

〉

avg
= 3

2
kT (S.33)

and hence

Knet = N ×
〈

1
2
mv2

〉

avg
= N ×

3
2
kT (S.34)

where N is the net number of gas molecules, whatever it happens to be. By the universal

gas law,

PV = nRT = NkT (S.35)

(note that N = n×NA while R = NA × k), hence

Knet = 3
2
NkT = 3

2
PV. (S.36)

For the helium gas in question,

Knet = 3
2
(3.00 · 10−3 m3)(8.00 · 105 Pa) = 3600 Pa ·m3 = 3600 J. (S.37)
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