
Summary of the Standard Model

Setup

The Standard Model of particle physics comprises 12 vector fields, 45 Weyl fermion fields

describing 6 quarks and 6 leptons, and a complex doublet H of scalar fields. The vector fields

Aaµ(x) are gauge fields of the local symmetry

G = SU(3)C × SU(2)W × U(1)Y ; (1)

the SU(3)C mixes 3 colors of quarks and antiquarks, the SU(2)W is the weak isospin, and

the U(1)Y couples to the weak hypercharge Y . The electroweak symmetry SU(2)W ×U(1)Y

is spontaneously broken by 〈H〉 6= 0 down to U(1)EM ; consequently, the W± and Z0 vector

particles become massive (MW ≈ 80.4 GeV, MZ ≈ 91.2 GeV) while the photon γ remains

massless. The photon couples to the electric charge

q = T 3 + Y (2)

and gives rise to the electromagnetic interactions; the W± and Z0 are responsible for the

weak interactions. Because photon is massless while the W± and Z0 are massive, the EM

forces have long range while the weak forces are rather short-ranged.

The SU(3)C vector particles are called gluons because they are responsible for strong

interactions which “glue” the quarks and antiquarks together into baryons and mesons. At

long distances d >∼ 1 GeV−1, the strong forces become so strong that individual quarks,

antiquarks, or gluons cannot be isolated as particles; this phenomenon is called confinement.

Only the SU(3)C–singlet combinations of quarks, antiquarks, and gluons can be separated

from each other.

The quarks come in 3 “colors” c = 1, 2, 3 and 6 “flavors” f = u, d, s, c, b, t called ‘up’,

‘down’, ‘strange’, ‘charm’, ‘beauty’ (or ‘bottom’), and ‘truth’ (or ‘top’); altogether, there

are 18 Dirac spinor fields. The left-handed Weyl components of these Dirac spinors form 9

doublets of the SU(2)W gauge symmetry, 3 flavor doublets (u, d)L, (c, s)L, (t, b)L for each

color. The right-handed Weyl components of the Dirac spinors are all SU(2)W singlets.

This difference between the left-handed and right-handed quarks explains why the weak
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interactions disrespect the parity symmetry; instead, W± couple to the left currents JµL =

V µ − Aµ and ignore the right currents JµR = V µ + Aµ.

The leptons — e−, µ−, τ−, and 3 neutrino species — have a similar left-right asymmetry.

The left-handed leptons form 3 SU(2)W doublets (νe, e
e)L, (νµ, µ

−)L, (ντ , τ
−)L, the right-

handed charged leptons e−R, µ−R, τ−R are singlets, and the right-handed neutrinos do not even

exist.

A Dirac spinor field Ψ and its conjugate Ψ are equivalent to two left-handed Weyl spinors

χ and χ̃ and their right-handed conjugates χ† and χ̃†; χ and χ† describe the left-handed

fermion and the right-handed antifermion (e.g. e−L and e+
R), while χ̃ and χ̃† describe the left-

handed antifermion and the right-handed fermion (e.g. e+
L and e−R). The Standard Model

has 21 Dirac spinors (3× 6 for quarks and 3 for charged leptons) plus 3 Weyl spinors for the

neutrinos; in the Weyl language, this amounts to 45 LH Weyl spinors χℵ and their hermitian

conjugates χ†ℵ.

Let’s organize these spinors by their SU(3)C × SU(2)W × U(1)Y quantum numbers.

• Left-handed quarks form 3 (3,2,+1
6) multiplets Qn (n = 1, 2, 3); their hermitian con-

jugates Q†n contain the right-handed antiquarks. When the SU(2)W×U(1)Y symmetry

is broken to U(1)EM , each Qn splits into a Q = +2
3 quark (u, c, or t) and a q = −1

3

quark (d, s, or b), both color-triplets. Covariant derivative of a Qn(x) field with a color

index i, an SU(2) index α, and a suppressed Weyl spinor index is

DµQ
iα
n (x) = ∂µQ

iα
n (x) +

ig3

2

8∑
C=1

GCµ (x)× λC ij Qj,αn (x)

+
ig2

2

3∑
a=1

W a
µ (x)× τaαβ Qiβn (x) +

ig1

6
Bµ(x)×Qiαn (x).

(3)

• Left-handed antiquarks ū, c̄, t̄ of charge q = −2
3 form 3 (3̄,1,−2

3) multiplets Un; the

hermitian conjugates U †n contain the right-handed quarks u, c, t of charge q = +2
3 .

Covariant derivative of a Un(x) field with a color index i is

DµUni(x) = ∂µUni(x) − ig3

2

8∑
C=1

GCµ (x)×Unj(x)λC ji −
2ig1

3
Bµ(x)×Uni(x). (4)

Note that SU(2) gauge fields W a
µ (x) do not enter into this covariant derivative because
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the Uni fields are SU(2) singlets. Also, the color index i is a lower rather than an upper

index because Un ∈ 3̄ rather than 3 for the SU(3)C , and the gluon fields GCµ couple

differently to the Uni fields than to the Liαn .

• Left-handed antiquarks d̄, s̄, b̄ of charge q = +1
3 form 3 (3̄,1,+1

3) multiplets Dn; the

hermitian conjugates D†n contain the right-handed quarks d, s, b of charge q = −1
3 .

Covariant derivative of a Dn(x) field with a color index i is

DµDni(x) = ∂µDni(x) − ig3

2

8∑
C=1

GCµ (x)×Dnj(x)λC ji +
ig1

3
Bµ(x)×Dni(x). (5)

• Left-handed leptons form 3 (1,2,−1
2) multiplets Ln; the hermitian conjugates L†n

contain right-handed antileptons. When the SU(2)W × U(1)Y symmetry is broken to

U(1)EM , each Ln splits into a charged lepton e−, µ−, or τ− and a neutrino νe, νµ, or

ντ , all color-singlets. Covariant derivative of a Ln(x) field with an SU(2) index α is

DµL
α
n(x) = ∂µL

α
n(x) +

ig2

2

3∑
a=1

W a
µ (x)× τaαβ Lβn(x) − ig1

2
Bµ(x)× Lαn(x). (6)

• The left handed anti-leptons e+
L , µ+

L , and τ+
L are singlets of hypercharge Y = +1;

collectively, they are En ∈ (1,1,+1) (n = 1, 2, 3), while the hermitian conjugates E†n

are the right-handed leptons e−R, µ−R, and τ−R . Covariant derivative of a En(x) field is

DµEn(x) = ∂µEn(x) + ig1Bµ(x)En(x). (7)

Having described all the fields of the Standard Model, we may now write down the

Lagrangian:

L = − 1
4

8∑
C=1

GCµνG
Cµν − 1

4

3∑
a=1

W a
µνW

aµν − 1
4 BµνB

µν

+ DµH†DµH − V (H†H)

+
∑
n,i,α

iQ†niασ̄
µDµQ

iα
n +

∑
n,i

iU †in σ̄
µDµUni +

∑
n,i

iD†in σ̄
µDµDni

+
∑
n,α

iL†nασ̄
µDµL

α
n +

∑
n

iEnσ̄
µDµEn

+ LYukawa + LLLHH .

(8)
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Here GCµν , W a
µν , and Bµν are canonically normalized tension fields for the SU(3), SU(2),

and U(1) gauge symmetries,

GCµν = ∂µG
C
ν − ∂νG

C
µ − g3f

CDEGDµ G
E
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g2Fε

abcW b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ ,

(9)

the Weyl indices of the fermionic fields Q, U , D, L, and E are implicit, the covariant

derivatives Dµ of those fields are as in eqs. (3) through (7), Dµ of the scalar fields are

DµH
α(x) = ∂µH

α(x) +
ig2

2

3∑
a=1

W a
µ (x)× τaαβ Hβ(x) +

ig1

2
Bµ(x)×Hα(x),

DµH
†
α(x) = ∂µH

†
α(x) − ig2

2

3∑
a=1

W a
µ (x)×H†β(x)τaαβ −

ig1

2
Bµ(x)×H†α(x),

(10)

because H ∈ (1,2,+1
2) of the SU(3)× SU(2)× U(1), and the scalar potential is

V (H†H) =
λ

2
(H†H)2 + m2H†H. (11)

The m2 coefficient is negative, so the Higgs fields develop non-zero vacuum expectation

values

〈Hα〉 =
v√
2
×

(
0

1

)
modulo symmetry, v =

√
−2m2

λ
. (12)

Experimentally, we know v ≈ 247 GeV, but we do not know the values of λ or −m2. The

VEV (12) breaks the SU(2)W × U(1)Y symmetry down to U(1)EM and gives the W± and

Z0 gauge fields masses MW = 1
2g2 × v and MZ = 1

2

√
g2

2 + g2
1 × v. In the process, 3 out of

4 real scalar fields comprising Hα are eaten up by the Higgs mechanism, leaving just one

real scalar h — the physical Higgs field. Theoretically, its mass is mh =
√
−2m2 =

√
λ× v,

but we don’t know λ, and the experimentalists are still looking for the Higgs particle; all we

know at the moment is mh > 114 GeV.
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Yukawa Couplings and Fermion Masses

The Standard Model’s Lagrangian (8) does not contain any mass terms form the quark

and lepton fields. Indeed, the SU(3)×SU(2)×U(1) quantum numbers of the 45 Weyl fields

χℵ = (Qiαn , Uni, Dni, L
α
n, En) do not allow for any gauge-invariant mass terms

Lmass = −1
2

∑
ℵ,ℵ′

Mℵ,ℵ′ χ
>
ℵ σ2χℵ′ − 1

2

∑
ℵ,ℵ′

M∗ℵ′,ℵ χ
†
ℵ′σ2χ

∗
ℵ . (13)

Therefore, before the spontaneous breakdown of the electroweak symmetry, all quarks and

leptons were massless.

Instead of mass terms, the SM Lagrangian contains Yukawa interactions of the fermions

and scalar fields. Back in 1935, Hideki Yukawa conjectured that the strong nuclear forces be-

tween protons and neutrons are due to exchanges of virtual scalar particles with O(100 MeV)

masses he called mesons. In QFT language, the coupling between the scalar meson field Φ(x)

and the Dirac spinor field Ψ(x) of a proton or neutron has form

L ⊃ −gΦΨΨ. (14)

When the earliest discovered mesons — the pions — turned up to be pseudo-scalar rather

that true scalars, their coupling to nucleons have to be modified as

L ⊃ −gΦΨ(iγ5)Ψ (15)

(isospin indices suppressed). In terms of the ΨL and ΨR Weyl components of Dirac spinors,

both the scalar and the pseudo-scalar Yukawa couplings take form

L ⊃ −gΦΨ†RΨL − g∗ΦΨ†LΨR , (16)

with a real g for a scalar Φ and imaginary g for pseudoscalar Φ.

In a generic theory without parity or charge-conjugation symmetries, it’s often convenient

to re-cast all fermionic degrees of freedom in terms of left-handed Weyl fields χℵ(x) and their

5



conjugates χ∗ℵ(x). The Yukawa couplings of such fermionic fields to scalar fields φs (real or

complex) have form

LYukawa = −1
2

∑
s,ℵ,ℵ′

Ys,ℵ,ℵ′(φs or φ†s)χ
>
ℵ σ2χℵ′ − 1

2

∑
s,ℵ,ℵ′

Y ∗s,ℵ,ℵ′(φ
†
s or φs)χ

†
ℵ′σ2χ

∗
ℵ (17)

where the Yukawa couplings Ys,ℵ,ℵ′ = Ys,ℵ′,ℵ must be invariant under gauge symmetries and

other exact symmetries of the theory.

For the Standard Model, φs is Hα or H†α, and the gauge-invariant scalar-fermion-fermion

combinations are H†LE, H†QD, HQU , and their hermitian conjugates. Thus, the Yukawa

interactions of the Standard Model comprise

LYukawa = −
∑
n,n′

Y En,n′H†α(Lαn)>σ2En′

−
∑
n,n′

Y Dn,n′H†α(Qiαn )>σ2Dn′i

−
∑
n,n′

Y Un,n′Hαεαβ(Qiαn )>σ2Un′i

+ Hermitian Conjugates.

(18)

Note: implicit summation over color, SU(2), and Weyl spinor indices. The Weyl indices

themselves are implicit (not written); the (Lβn)>, etc., are transposed with respect to Weyl

indices only.

Once the scalar fields develop VEVs (12), the Yukawa couplings give rise to the fermion

mass terms

Lmass = −
∑

n,n′=e,µ,τ

ME
n,n′ (L2

n)>σ2En′ −
∑

n,n′=e,µ,τ

(ME
n,n′)∗ (L2

n)†σ2E
∗
n′

−
∑

n,n′=d,s,b

MD
n,n′ (Qi2n )>σ2Dn′i −

∑
n,n′=d,s,b

(MD
n,n′)∗ (Qi2n )†σ2D

∗
n′i

−
∑

n,n′=u,c,t

MU
n,n′ (Qi1n )>σ2Un′i −

∑
n,n′=u,c,t

(MU
n,n′)∗ (Qi1n )†σ2U

∗
n′i

(19)

where

ME
n,n′ =

v√
2
× Y En,n′ , MD

n,n′ =
v√
2
× Y Dn,n′ , MU

n,n′ =
v√
2
× Y Un,n′ (20)

are 3× 3 mass matrices for fermions of similar charges: ME
n,n′ is the mass matrix for charged
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leptons e, µ, τ , MD
n,n′ is the mass matrix for quarks d, s, b of charge q = −1

3 , and MU
n,n′ is

the mass matrix for quarks u, c, t of charge q = +2
3 . Indeed, L2

n are LH charged leptons

and En are LH charged antileptons; Qi2n are LH quarks of charge q = −1
3 and Dni are

the corresponding LH antiquarks; Qi1n are LH quarks of charge q = +2
3 and Uni are the

corresponding LH antiquarks.

To go from mass matrices to particle masses, we need to diagonalize the matrices via

unitary field redefinitions

Lαn →
∑
n′

ULn,n′Lαn′ , En →
∑
n′

UEn,n′En′ , (21)

and likewise for the quarks Qn and antiquarks Un and Dn. In matrix notations, the re-

definition (21) turns the lepton mass matrix ME into

ME →
(
UL
)∗
ME

(
UE
)†
. (22)

The only invariants of such redefinitions are eigenvalues of the hermitian matrix M †EME ,

and one can always find some unitary matrices UL and UE that would make the ME matrix

diagonal, with real non-negative eigenvalues,
?

ME →

me 0 0

0 mµ 0

0 0 mτ

 . (23)

Consequently, we may combine the re-defined fields (21) into Dirac spinor fields

Ψe =

(
L2

1

σ2E
∗
1

)
, Ψµ =

(
L2

2

σ2E
∗
2

)
, Ψτ =

(
L2

3

σ2E
∗
3

)
, (24)

? A theorem of matrix algebra says that for any complex N × N matrix M , there exist two unitary
matrices U and V such that UMV is diagonal, and the diagonal elements are real and non-negative.
A similar theorem applies to operators in a Hilbert space.

To prove the theorem, note that M†M is a hermitian matrix with non-negative eigenvalues. Let
H = (M†M)1/2. IfH is invertible, thenW = MH−1 is unitary, (Indeed, W †W = (H−1M†)(MH−1) =
H−1H2H−1 = 1.) But even if H is not invertible, there is a unitary matrix W such that M = WH
(but I am not going to prove this here).

H is hermitian matrix, so it can be diagonalized as H = V DV −1 where V is unitary and D is
diagonal (and the eigenvalues are non-negative because H is a positive square root of M†M). For M ,
this means M = WVDV −1 and hence (WV )−1MV = D.
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so that kinetic and mass terms for the charged leptons become

L ⊃
∑

n=e,µ,τ

(
i(L2

n)†σ̄µDµL
2
n + iE†nσ̄

µDµEn − ME
n

(
(L2

n)>σ2En + E†nσ2(L2
n)∗
))

= Ψe(iγ
µDµ −me)Ψe + Ψµ(iγµDµ −mµ)Ψµ + Ψτ (iγµDµ −mτ )Ψτ .

(25)

Similar unitary redefinitions of the Qn, Un, and Dn Weyl spinor fields make the MU and

MD quark mass matrices diagonal and real,

Qiαn →
∑
n′

UQn,n′Q
iα
n′ , Un,i →

∑
n′

UUn,n′Un′,i ,

MU →
(
UQ
)∗
MU

(
UD
)†

=

mu 0 0

0 mc 0

0 0 mt

 , (26)

Qiαn →
∑
n′

ŨQn,n′Q
iα
n′ , Dn,i →

∑
n′

UDn,n′Dn′,i ,

MD →
(
ŨQ
)∗
MD

(
UD
)†

=

md 0 0

0 ms 0

0 0 mb

 , (27)

which allows us to package all quarks into Dirac spinor fields

Ψi
u =

(
Qi,11

σ2(U1,i)
∗

)
, Ψi

c =

(
Qi,12

σ2(U2,i)
∗

)
, Ψi

t =

(
Qi,13

σ2(U3,i)
∗

)
,

Ψi
d =

(
Qi,21

σ2(D1,i)
∗

)
, Ψi

s =

(
Qi,22

σ2(D2,i)
∗

)
, Ψi

b =

(
Qi,23

σ2(D3,i)
∗

)
,

(28)

with kinetic and mass terms

Lquarks =
∑

f=u,c,t

Ψf,i(iγ
µDµ −mf )Ψi

f +
∑

f=d,s,b

Ψf,i(iγ
µDµ −mf )Ψi

f . (29)

Note that eqs. (26) and (27) transform the left-handed quarks according to different

3×3 matrices UQ 6= ŨQ. Consequently, in the mass eigenstate basis, the down, strange, and
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bottom quarks are no longer the SU(2) partners of respectively up, charm, and top quarks.

Instead, the SU(2) doublets are

(u, d′), (c, s′), (t, b′) (30)

where d′, s′, and b′ are linear combinations of the d, s, b quarks, d′

s′

b′

 = V

 d

s

b

 , V = UQ
(
ŨQ
)†
6= 1. (31)

The unitary matrix V here — called the Cabibbo–Kobayashi–Maskawa matrix (or CKM

matrix) — affects the couplings of quarks to the charged W±µ vectors mediating weak inter-

actions.

Weak Currents

In eq. (29) couplings of quarks to gauge bosons hide inside the covariant derivatives Dµ.

Let’s split those derivatives into D̂µ that are covariant with respect to the unbroken SU(3)C×
U(1)EM symmetries only and the explicit coupling to the massive gauge fields W±µ and Z0

µ

of the broken symmetries, thus

Lquarks =
∑

f=u,c,t,d,s,b

∑
i

Ψf,i

(
iγµD̂µ − mf

)
Ψi
f

− g2√
2

(
W+
µ × T−µ + W−µ × T+µ

)
− g̃Z0

µ × T
µ
Z

(32)

where

D̂µΨi
f (x) = ∂µ(x) + ig3

8∑
C=1

∑
j

GCµ (x)
(

1
2λ

C
)i
j
Ψj
f + 2

3 ieAµ(x)Ψi
f for f = u, c, t,

D̂µΨi
f (x) = ∂µ(x) + ig3

8∑
C=1

∑
j

GCµ (x)
(

1
2λ

C
)i
j
Ψj
f −

1
3 ieAµ(x)Ψi

f for f = d, s, b.

(33)

Note that the unitary redefinitions (26) and (27) of the Weyl fields commute with color and

electric charges, so the do not affect the action of D̂µ on the Weyl fermions. Moreover,

we may extend their action to the complete Dirac spinors (28) since their left-handed and

right-handed components have exactly the same charges, thus eqs. (33).
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But the couplings of the weak fields are more complicated. In the Weyl fermion language

T a,µ =
∑
n

Q†n,i,ασ̄
µ(1

2τ
a)αβQ

i,β
n (34)

but only in the original basis where Qi,1n are SU(2) partners of Qi,2n . Indeed, consider the

charged weak currents relating α = 1 to β = 2 or vice verse. Using

1
2(τ1 + iτ2) =

(
0 1

0 0

)
, 1

2(τ1 − iτ2) =

(
0 0

1 0

)
, (35)

we may write the charged currents as

T+µ = T 1,µ + iT 2,µ =
∑
n

Q†n,i,2σ̄
µQi,1n ,

T−µ = T 1,µ − iT 2,µ =
∑
n

Q†n,i,1σ̄
µQi,2n .

(36)

But when we perform different unitary redefinitions UQ and ŨQ for the Qi,1n and Qi1n fields

as in eqs. (26) and (27), we end up with

T+µ =
∑
n,n′

Vn′,nQ
†
n′,i,2σ̄

µQi,1n ,

T+µ =
∑
n,n′

V ∗n,n′Q
†
n,i,1σ̄

µQi,2n′ ,
(37)

where V = (ŨQ)†UQ is the Cabibbo–Kobayashi–Maskawa matrix. In terms of Dirac fermions,

the currents (37) become

T+µ =
∑

f=u,c,t

∑
f ′=d,s,b

Vf ′,fΨf ′,iγ
µ1− γ5

2
Ψi
f ,

T−µ =
∑

f=u,c,t

∑
f ′=d,s,b

V ∗f ′,fΨf,iγ
µ1− γ5

2
Ψi
f ′ ,

(38)

where the (1−γ5)/2 factor projects on the left-handed Weyl components only. Thanks to the

CKM matrix elements here, weak decays involving charged currents may change the quark

flavors not only within families — t→ b, c→ s, d→ u — but also across families — t→ s,

t→ d, b→ c, b→ u, c→ d, or s→ u.
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But the neutral weak current

TµZ = T 3,µ − sin2 θ Jµel (39)

does not change quark flavors as long as all 3 families have exactly similar SU(2) × U(1)

quantum numbers. Indeed, the TZ = T 3− sin2 θQel charge matrix is diagonal in the original

basis Qi,αn , Un,i, Dn,i of Weyl fermions, hence

TµZ =
∑
ℵ
TZ(ℵ)× χ†ℵσ̄

µχℵ

=
(
+1

2 −
2
3 sin2 θ

)
×
∑
n

Q†n,i,1σ̄
µQi,1n +

(
−1

2 + 1
3 sin2 θ

)
×
∑
n

Q†n,i,2σ̄
µQi,2n

+
(
0 + 2

3 sin2 θ
)
×
∑
n

U i†n σ̄
µU in +

(
0 − 1

3 sin2 θ
)
×
∑
n

Di†
n σ̄

µDi
n ,

(40)

and since all the TZ charges are n-independent, the neutral weak current is unaffected by

the unitary field redefinitions (26) and (27). In terms of the Dirac fermions, the neutral

current (40) becomes

TµZ =
∑

f=u,c,t

Ψf,iγ
µ

(
+

1− γ5

4
− 2

3
sin2 θ

)
Ψ0
f +

∑
f=d,s,b

Ψf,iγ
µ

(
−1− γ5

4
+

1

3
sin2 θ

)
Ψi
f .

(41)

As promised, this current does not mix flavors, so weak transitions due to the neutral currents

never change the flavor.

Note that the absence of flavor-changing neutral currents depends on all quarks of the

same electric charge and chirality having the same T 3 and hence TZ . In a non-standard

model, we could have had an un-paired quark whose left-handed and right-handed compo-

nents are both SU(2) singlets while Q = Y = −1
3 . Such a quark would have a different TZ

from the down-type quarks of the same charge, so of the mass matrix had somehow mixed an

un-paired quarks with down-type quarks, then in the mass eigenbasis the TZ charge would

have off-diagonal elements. Thus, in a non-standard model like that we would have had

flavor-changing neutral current.
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Historically, back when only 3 quark flavors u, d, s were known, people assumed the s

quark was un-paired. Or rather, (u, d′) was an SU(2)W doublet while s′ was a singlet for

d′ = d× cos θc + s× sin θc , s′ = s× cos θc − d× sin θc , θc ≈ 13◦. (42)

In such a model, there should be s↔ d flavor changing neutral currents, which should have

lead to weak decays such as K0 → µ+µ−. But experimentally, there are no such decays, nor

any other signatures of flavor-changing neutral currents. This made Glashow, Illiopoulos,

and Maiani conjecture in 1970 that the s quark (or rather the s′) should be a member of

a doublet just like the d quark, which means that there must be a fourth quark flavor c to

form the (c, s′) doublet. And in 1974 this fourth flavor (called ‘charm’) was experimentally

discovered at SLAC and BNL.

Later, when the fifth flavor b was discovered in 1977, most physicists expected it to also

be a part of the doublet, so everybody was looking for the sixth flavor t. This expectation

turned out to be correct, and the t quark was duly discovered in 1995. The delay was due

to very large mass of the top quark, mt ≈ 173 GeV, much heavier that the other 5 flavors.

What about the leptonic weak currents? In terms of Weyl fermions Lαn and EN ,

T+µ =
∑
n

L†n,2σ̄
µL1

n ,

T−µ =
∑
n

L†n,1σ̄
µL2

n ,

TµZ =
(

1
2 − 0

)∑
n

L†n,1σ̄
µL1

n +
(
−1

2 + sin2 θ
)∑

n

L†n,2σ̄
µL2

n +
(
0− sin2 θ

)∑
n

E†nσ̄
µEn .

(43)

In this formula, we are free to use the mass eigenbasis for the charged leptons e, µ, τ as

long as we are using the matching basis for the neutrinos. Thus, if L2
1 = e−L , L2

2 = µ−L ,

and L2
3 = τ−L then L1

1 = νe (the electron’s neutrino), L1
2 = νµ (the muon’s neutrino), and

L1
3 = ντ (the tau’s neutrino). For massless neutrinos, the (νe, νµ, ντ ) basis is as good as

any other and better then most. When the neutrino become massive, there is an alternative

basis (ν1, ν2, ν3) of mass eigenstates, and one has to consider a CKM-like matrix converting

between the two basis. This matrix is important for neutrino oscillations, but in most other

experiments involving neutrinos, the weak interactions are more important than the very

small neutrino masses, so people stick to the (νe, νµ, ντ ) basis.
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For the charged leptons, we may combine the Weyl spinors L2
n and En into Dirac spinors

Ψe =

(
L2

1

σ2E
∗
1

)
, Ψµ =

(
L2

2

σ2E
∗
2

)
, Ψτ =

(
L2

3

σ2E
∗
3

)
. (24)

For the neutrinos, there are only left-handed Weyl spinors L1
n(x) and no left-handed an-

tineutrinos whose conjugates can serve as independent RH neutrinos. Thus, we do not have

Dirac spinor fields for the neutrinos, but we can make turn the Weyl spinors into Majorana

spinors as

Ψνe =

(
L1

1

σ2(L1
1)∗

)
, Ψνµ =

(
L1

2

σ2(L1
2)∗

)
, Ψντ =

(
L1

3

σ2(L1
3)∗

)
. (44)

In terms of Dirac spinors for charged leptons and Majorana spinors for neutrinos,

Lleptons =
∑

`=e,µ,τ

Ψ`

(
iγµ∂µ + eγµAµ − m`

)
Ψ` +

∑
ν=νe,νµ,ντ

1
2Ψν(iγµ∂µ)Ψν

− g2√
2

(
W+
µ × T−µ + W−µ × T+µ

)
− g̃Z0

µ × T
µ
Z

(45)

where

T+µ = Ψe γ
µ 1− γ5

2
Ψνe + Ψµ γ

µ 1− γ5

2
Ψνµ + Ψτ γ

µ 1− γ5

2
Ψντ ,

T−µ = Ψνe γ
µ 1− γ5

2
Ψe + Ψνµ γ

µ 1− γ5

2
Ψµ + Ψντ γ

µ 1− γ5

2
Ψτ ,

TµZ =
∑

`=e,µ,τ

Ψ` γ
µ

(
−1− γ5

4
+ sin2 θ

)
Ψ` +

∑
ν=νe,νµ,ντ

Ψν γ
µ

(
+

1− γ5

4

)
Ψν .

(46)

Effective Fermi Theory

Consider the massive vector fields W±µ and Z0
µ mediating the weak interactions. The

Lagrangian terms for these fields include

LW,Z = M2
W W+

µ W
−µ + 1

2M
2
Z ZµZ

µ − g2√
2

(
W+
µ × T−µ + W−µ × T+µ

)
− g̃Z0

µ × T
µ
Z

+ kinetic terms + non-abelian interactions

+ interactions with the physical Higgs field,
(47)

where the currents T±µ and TµZ include both the quark and the leptonic terms. In low-energy

13



experiments (E � MW ) there are no physical W± or Z0 particles, but the response of the

W±µ and Zµ fields to the fermionic currents leads to interactions between the fermions.

To see how this works, let’s neglect the interactions between the vector fields or their

couplings to the physical Higgs field and focus on their couplings to the currents. In this

approximation, the vector fields equations of motion become

(M2
W + ∂2)W±µ =

g2√
2
T±µ , (M2

Z + ∂2)Zµ = g̃TZµ . (48)

Moreover, at low energies and momenta of all particles, me may ignore the ∂2 terms on the

left hand sides of these formulae compared to the M2 terms. In this limit,

W±µ =
g2√

2M2
W

T±µ , Zµ =
g̃

M2
Z

TZµ (49)

which follow from the effective Lagrangian

Leff
W,Z ≈ M2

W W+
µ W

−µ + 1
2M

2
Z ZµZ

µ − g2√
2

(
W+
µ × T−µ + W−µ × T+µ

)
− g̃Z0

µ×T
µ
Z . (50)

Furthermore, eqs. (49) are algebraic rather than differential, so we may plug their solutions

back into the Lagrangian (50), thus

Leff = − g2
2

2M2
W

× T+
µ T
−µ − g̃2

2M2
Z

× TZ,µTµZ . (51)

At this point, we have an effective Lagrangian for the interactions between fermionic fields

that no longer refers to the massive vector fields we have started from! Instead we have an

effective theory of low-energy weak interactions. It’s called the Fermi theory since Enrico

Fermi have written the current× current effective Lagrangian back in 1930’s.

To be precise, Fermi had only the charged currents for the proton, neutron, electron,

and the neutrino fields, and the currents were vector currents V µ = ΨγµΨ rather than the

left-handed currents V µ − Aµ. Over the years, people has added more particles species to

the currents, figured out the parity violation in 1950’s, conjectured that there might also be

a neutral current in 1960’s, and eventually discovered its existence in 1970’s.
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Note: the effective Lagrangian (51) is usually written as

Leff = −GF√
2

(
2T+

µ × 2T−µ + ρ× (2TZ)µ × (2TZ)µ)
)

(52)

where GF = 1.16637 · 10−5 GeV−2 is the Fermi’s constant known from β decays and ρ is the

model dependent relative strength of the neutral-current weak interactions. In the Standard

Model

GF =

√
2g2

2

8M2
W

=

√
2/2

v2
=⇒ v = 247 GeV, (53)

and

ρ =
g̃2

M2
Z

/
g2

2

M2
W

=
M2
W

M2
Z

× g̃2

g2
2

= cos2 θ × 1

cos2 θ
= 1. (54)

Experimentally, ρ is very close to 1, which agrees with the Standard Model and disagrees

with many alternative models.

Neutrino Masses

Originally, the Standard Model had exactly massless neutrinos. When the neutrino

were experimentally found to oscillate between species νe ↔ νµ ↔ ντ — which calls for

small but non-zero neutrino masses — the SM was extended by adding extra couplings to

the Lagrangian. The additional couplings were similar to Yukawa couplings but involved

two scalar fields instead of one. Specifically, the new couplings — denoted LLLHH in the

Lagrangian (8) — connect two lepton fields to two Higgs fields; in the Weyl fermion language

LLLHH = 1
2

∑
n,n′

Nn,n′
(
HαεαβL

β
n

)>
σ2

(
HαεαβL

β
n′

)
+ Hermitian Conjugates. (55)

Note that the combination HαεαβL
β
n is invariant under all gauge symmetries, but it’s a LH

Weyl spinor of the Lorentz symmetry, so it needs to be squared to make a good Lagrangian

term.
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When the Higgs doublet develops VEVs (12), the interactions (55) give rise to the mass

terms for the neutrinos L1
n = νe, νµ, ντ . Indeed,

(
HαεαβL

β
n

)
=

v√
2
× L1

n + (hν) interactions, (56)

hence

LLLHH ⊃ Lνmass = 1
2

∑
n,n′

Mν
n,n′ (L1

n)>σ2(L1
n′) + 1

2

∑
n,n′

(Mν
n,n′)∗ (L1

n)†σ2(L1
n′)∗ (57)

where

Mν
n,n′ =

v2

2
×Nn,n′ . (58)

Unlike the dimensionless gauge and Yukawa couplings, the Nn,n′ couplings have dimensional-

ity (energy)−1. We shall see later in class that such couplings make trouble for perturbation

theory at high energies, so they are not allowed in UV-complete quantum field theories.

However, if the Standard Model is only an effective theory that’s valid up to some maximal

energy Emax but at higher energies must be superseded by a more complete theory, then it’s

OK for the SM to have small negative-dimensionality couplings Nn,n′ ≤ (1/Emax). The key

word here is small — it explains why the neutrinos are much lighter than the other fermions,

Mν <
v2

Emax
� v. (59)

Indeed, for Emax = O(1015 GeV), this gives us a limit Mν <∼ 0.1 eV, while the other fermions

have masses between 0.51 MeV (the electron) and 170 GeV (the top quark).

In general, the neutrino mass matrix (58) is non-diagonal and complex, although Mν
n,n′ =

Mν
n′,n. The physical neutrino masses2 are eigenvalues of the (Mν)†Mν , and the mass eigen-

states ν1, ν2, ν3 could be quite different from the charge-current basis νe, νµ, ντ . Indeed, the

experimentally measure neutrino mixing angles are rather large — up to 55◦, much larger

than the CKM mixing angles for the quarks.
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