QFT Dimensional Analysis

In 7 = ¢ = 1 units, all quantities are measured in units of energy to some power. For
example [m} = [p“} = Et1 while [w“} = B! where [m] stands for the dimensionality of
the mass rather than the mass itself, and ditto for the [p“}, [x“], etc. The action

S :/d4x£

is dimensionless (in 7 # 1 units, [S} = h), so the Lagrangian of a 4D field theory has

dimensionality [£] = ET4.

Canonical dimensions of quantum fields follow from the free-field Lagrangians. A scalar
field ®(x) has

Liee = 50,20"® — Im?®?, (1)
so [£] = E™, [m?] = ET2, and [0,] = E'! imply [®] = ET!. Likewise, the EM field has
LiN = —1F,F" = [Fu] = E'? 2)

free

and since F,, = 0, A, — 0,A,, the A, (z) field has dimension
4] = [Fu] /[0 = £ 3)
The massive vector fields also have [A,,} = E* so that both terms in
Liee = —2F " + Im?A,A” (4)

have dimensions [F 2} = [m2A2] = Ft4,

In fact, all bosonic fields in 4D spacetime have canonical dimensions E+! because their
kinetic terms are quadratic in d,(field). On the other hand, the fermionic fields like the
Dirac field ¥(x) with free Lagrangian

['free - @(Muaﬂ - m)\I} (5)

have kinetic terms with two fields but only one 0,. Consequently, [E] = E** implies
W\IJ} = E*3 and hence [\Il] = [m — E13/2, Similarly, all other types of fermionic fields in

4D have canonical dimension E13/2,



In QFTs in other spacetime dimensions d # 4, the bosonic fields such as scalars and

vectors have canonical dimension
@] = [4)] = B2 (6)
while the fermionic fields have canonical dimension

[‘If} — E+(d_1)/2, (7)

In perturbation theory, dimensionality of coupling parameters such as A in A®* theory or
e in QED follows from the field’s canonical dimensions. For example, in a 4D scalar theory
with Lagrangian

C
L= 30,20"0 — Jm*®* — y —L o, (8)
n>3

the coupling C), of the " term has dimensionality

) = (2] /[ [o) = B )

In particular, the cubic coupling C3 has positive energy dimension ET!, the quartic cou-
pling A\ = C} is dimensionless, while all the higher-power couplings have negative energy

dimensions Frmegative

Now consider a theory with a single coupling ¢g of dimensionality [g} = E2. The per-

turbation theory in g amounts to a power series expansion

g N

M (momenta, g) = Z <5_A> X F(momenta) (10)
N

where £ is the overall energy scale of the process in question and all the F functions of

momenta have the same dimensionality. The power series (10) is asymptotic rather than

convergent, so it makes sense only when the expansion parameter is small,

g% < 1 (11)

For a dimensionless coupling g, this condition is simply g < 1, but for A # 0, the situation

is more complicated.



For couplings of positive dimensionality A > 0, the expansion parameter (11) is always
small for for high-energy processes with & > ¢'/2. But for low energies £ < ¢'/2, the
expansion parameter becomes large and the perturbation theory breaks down. This is a
major problem for theories with A > 0 couplings of massless particles. However, if all the
particles participating in a A > 0 coupling are massive, then all processes have energies

& R Miightest, and this makes couplings with A > 0 OK as long as

A
g < Mlightest‘ (12)

Couplings of negative dimensionality A < 0 have an opposite problem: The expansion
parameter (11) is small at low energies but becomes large at high energies £ = g A,

Beyond the maximal energy

Emax gl/(—A)’ (13)

the perturbation theory breaks down and we may no longer compute the S-—matrix elements

M using any finite number of Feynman diagrams.

Worse, in Feynman diagrams with loops one must worry not only about momenta k*
of the incoming and outgoing particles but also about momenta ¢* of the internal lines.
Basically, an L-loop diagram contributing to N'' term in the expansion (10) produces

something like
ng/d4Lq]:N(q, k,m) where [Fy] = E~NATALAC 0 — const. (14)

~NA-AL+C g for

For very large loop momenta ¢ > k, m, dimensionality implies Fy x ¢
N(=A) + C > 0, the integral (14) diverges as ¢ — 0o. Moreover, the degree of divergence
increases with the order NV of the perturbation theory, so any scattering amplitude becomes
divergent at high orders. Therefore, field theories with A < 0 couplings do not work as

complete theories.

However, theories with A < 0 may be used as approximate effective theories (without the

divergent loop graphs) for low-energy processes, £ < A for some A < g~ /A . For example,



the Fermi theory of weak interactions

Ling = D Tl =) x Tk (1 =)0 (15)

Gr
\/§ appropriate

fermions

has coupling G of dimension [Gg] = E~2: its value is Gp ~ 1.17 - 107® GeV 2. This is
a good effective theory for low-energy weak interactions, but it cannot be used for energies
£ 2 1/v/Gr ~ 300 GeV, not even theoretically. In real life, the Fermi theory works only
for &€ < My ~ 80 GeV; at higher energies, one should use the complete SU(2) x U(1)

electroweak theory instead of the Fermi theory.

Similar to the Fermi theory, most effective theories with A < 0 couplings are low-energy
limits of more complicated theories with extra heavy particles of masses M < ¢~ /2 but no

A < 0 couplings.

In QFTs which are valid for all energies, all coupling must have zero or positive energy
dimensions. In 4D, a coupling involving b bosonic fields (scalar or vector), f fermionic fields,

and 0 derivatives d,, has dimensionality

A=4—-0b-23f—3 (16)

Thus, only the boson® couplings have A > 0 while the A = 0 couplings comprise boson?,

boson x fermion?, and boson? x dboson. All other coupling types have A < 0 and are not

allowed (except in effective theories).
Here is the complete list of the allowed couplings in 4D.

1. Scalar couplings

M3 A 4

Note: the higher powers ®°, &6 etc., are not allowed because the couplings would

have A < 0.



2. Gauge couplings of vectors to charged scalars
—igA" (70,9 — ©9,9%) + ¢*d*PA,A* C D,P* D' (18)
3. Non-abelian gauge couplings between the vector fields
(9, A% AP AV QZQ abe pade gb gc Aud gve. _i Fo e, (19)
4. Gauge couplings of vectors to charged fermions,
—qA* x U, U C U(iy,D*)V. (20)

If the fermions are massless and chiral, we may also have

—qA, x Uy* LF 7 v, (21)
or in the Weyl fermion language
—qA, X ){r&“x.
5. Yukawa couplings of scalars to fermions,
—y® x U¥ or —iyd x Uy 0. (22)

If parity is conserved, in the first terms ® should be a true scalar, and in the second

term a pseudo-scalar.

In other spacetime dimensions d # 341, a coupling involving b bosonic fields, f fermionic

fields, and 0 derivatives has energy dimension

d—2 d—1 b -2
5 _fX_Q _5:b+%f—6——+£ X d. (23)

A =d— bx

Since all interactions involve three or more fields, thus b + f > 3, the dimensionality of any
particular coupling always decreases with d. Consequently, there are more perturbatively-
allowed couplings with A > 0 in lower dimensions d =2+ 1 or d = 1 4+ 1 but fewer allowed

couplings in higher dimensions d > 3 + 1. In particular,



e Ind > 6+ 1 dimensions all couplings have A < 0 and there are no UV-complete

quantum field theories, or at least no perturbative UV-complete quantum field theories.

e In d =5+ 1 dimensions there is a unique A = 0 coupling (1/6)®3, while all the other
couplings have A < 0. Consequently, the only perturbative UV-complete theories are

scalar theories with cubic potentials,

L= (50u®a)’ = $ma®2) — &> papePa®pPe. (24)

a a,b,c

However, while such theories are perturbatively OK, they do not have stable vacua.
Indeed, a cubic potential is un-bounded from below — it goes to —oo along half of the
directions in the field space — so even if it has a local minimum at &, = 0, it’s not
the global minimum. Consequently, in the quantum theory, the naive vacuum with

(®4) = 0 would decay by tunneling to a run-away state with (®,) — Fo0.

e Ind=4+1 dimensions, the (11/6)®3 coupling has positive A = +3 while all the other
couplings have negative energy dimensions. Again, the only perturbative UV-complete

theories are scalar theories with cubic potentials, but they do not have stable vacua.

* The bottom line is, in d > 3 + 1 dimensions, all quantum field theories are effective
theories for low-enough energies. At higher energies, a different kind of theory must
take over — perhaps a theory in a discrete space, perhaps a string theory, or maybe

something more exotic.

On the other hand, in lower dimensions d = 2+ 1 or d = 1 + 1 there are a lot of allowed

couplings with A > 0. In particular, in d = 2 + 1 dimensions the allowed couplings include:
o Scalar couplings (Cy,/n!)®" up to n = 6;
o gauge and Yukawa couplings like in 4D;
o Yukawa-like couplings §®% x W involving 2 scalars;

o gauge-like couplings with ggauge linearly dependent on a neutral scalar field:

D,V = 9,V + i(go+ch)A ¥ = U(iy"D,)T D —cpA, Uy, (25)



and likewise
DFO*D,® D —icg A x (B*0,® — BI,D*) + P¢° x D*BPAAY,  (26)

or non-abelian

1 a rva aoc a vc C2 aoc raae C ve
— 3 B " o —co x f be(9), ALY AR AV qu? x fabefode b AC Amd Ave (27)

There are also combinations of g = gg + ¢¢ with Chern—Simons couplings (like the 3D
photon mass term in the mid-term exam and its non-abelian generalizations), but I

don’t want to get into their details here.
x There might be some other allowed couplings in 3D, but never mind for now.

Finally, in d = 1+ 1 dimensions there is an infinite number of allowed A > 0 couplings.
Indeed, for d = 1+1 the bosonic fields have energy dimension E°, so A of a coupling does not
depend on the number b of bosonic fields it involves but only on the numbers of derivatives

and fermionic fields,
A=2-6-1f (28)

Consequently, all scalar potentials V(®) — including C,,®" terms for any n, and even the
non-polynomial potentials — have A = 42, so any V(®) is allowed in 2D. Likewise, all
Yukawa-like couplings ®"WW have A = +1, so we may have terms like y; ,(®) x 07 for

any functions y; ;(®).

At the A = 0 level, we are allowed generic Riemannian metrics g;;(®) of the scalar field

space, hence field-dependent kinetic terms
Liin = 39i5(¢) x O"¢' 0u¢/ (29)

as well as a whole bunch of fermionic terms with arbitrary scalar-dependent coefficients,

1 =1 g = J k —J J
Ly D 3975(@) x U A (i0, =10, | V" + (@) x 0,0% x ¥ ~H¥ (30)
30

+ LR gn(®) x T yw? x T, wl

In addition, there are gauge couplings with arbitrary scalar dependent ggauge(®), chiral

couplings to Weyl or Majorana-Weyl fermions, etc., etc..



