
On Perturbation Theory, Dyson Series, and Feynman Diagrams

The Interaction Picture of QM and the Dyson Series

Many quantum systems have Hamiltonians of the form Ĥ = Ĥ0 + V̂ where Ĥ0 is a free

Hamiltonian with known spectrum — which is used to classify the states of the full theory

— while V̂ is a perturbation which causes transitions between the eigenstates of the Ĥ0. For

example, in scattering theory

Ĥ0 =
P̂2

red

2Mred
, V̂ = potential V (x̂rel). (1)

Similarly, for quantum scalar field Φ̂ with a (λ/24)Φ̂4 self-interaction we have

Ĥ0 =

∫

d3x

(

1
2Π̂

2(x) + 1
2

(

∇Φ̂(x)
)2

+
m2

2
Φ̂2

)

=

∫

d3p

(2π)3
1

2Ep

Epâ
†
pâp + const

while V̂ =

∫

d3x
λ

24
Φ̂4(x).

(2)

To study the transitions (scattering, making new particles, decays, etc.) caused by V̂ we

want to use a fixed basis of Ĥ0 eigenstates, but we want to keep the transitions separate

from wave-packet spreading and other effects due to Schrödinger phases e−iEt of the Ĥ0

itself. The picture of QM which separates these effects is the interaction picture.

In the Schrödinger picture, the operators are time-independent while the quantum states

evolve with time as |ψ〉S(t) = e−iĤt |ψ〉(0). In the Heisenberg picture it’s the other way

around — the quantum states are time independent while the operators evolve with time —

and the two pictures are related by a time-dependent unitary operator eiĤt,

|Ψ〉H(t) = e+iĤt |Ψ〉S(t) ≡ |Ψ〉S(0) ∀t, ÂH(t) = e+iĤtÂSe
−iĤt. (3)

The interaction picture has a similar relation to the Schrödinger’s, but using the exp(iĤ0t)
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instead of the exp(iĤt),

ÂI(t) = e+iĤ0tÂSe
−Ĥ0t,

|ψ〉I(t) = e+iĤ0t |ψ〉S(t) = e+iĤ0te−iĤt |ψ〉H 6= const.
(4)

In the interaction picture, quantum fields depend on time as if they were free fields, for

example

Φ̂I(x, t) =

∫

d3p

16π3Ep

(

e−ipxâp + e+ipxâ†p

)p0=+Ep

, (5)

regardless of the interactions. This is different form the Heisenberg picture where non-free

fields depend on time in a much more complicated way.

The time-dependence of quantum states in the interaction picture is governed by the

perturbation V̂ according to Schrödinger-like equation

i
d

dt
|ψ〉I(t) = V̂I(t) |Ψ〉I(t). (6)

The problem with this equation is that the V̂I operator here is itself in the interaction picture,

so it depends on time as V̂I(t) = e+iĤ0tV̂Se
−Ĥ0t. Consequently, the evolution operator for

the interaction picture

ÛI(t, t0) : |ψ〉I(t) = ÛI(t, t0) |ψ〉I(t0) (7)

is much more complicated than simply e−iV̂ (t−t0). Specifically, ÛI(t, t0) satisfies

i
∂

∂t
ÛI(t, t0) = V̂I(t) ÛI(t, t0), ÛI(t = t0) = 1, (8)

and the formal solution to these equations is the Dyson series

ÛI(t, t0) = 1 − i

t
∫

t0

dt1 V̂I(t1) −

t
∫

t0

dt2 V̂I(t2)

t2
∫

t0

dt1 V̂I(t1)

+ i

t
∫

t0

dt3 V̂I(t3)

t3
∫

t0

dt2 V̂I(t2)

t2
∫

t0

dt1 V̂I(t1) + · · ·

= 1 +
∞
∑

n=1

(−i)n
∫

· · ·

∫

t0<t1<···<tn<t

dtn · · · dt1 V̂I(tn) · · · V̂I(t1).

(9)
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Note the time ordering of operators V̂I(tn) · · · V̂I(t1) in each term.

The Dyson series obviously obeys the initial condition ÛI(t = t0) = 1. To see that is also

satisfies the Schrödinger-like differential equation (8), note that in each term of the series,

the only thing which depends on t is the upper limit of the leftmost dtn integral. Thus,

taking ∂/∂t of the term amounts to skipping that integral and letting tn = t,

i
∂

∂t



(−i)n
t

∫

t0

dtn V̂I(tn)

tn
∫

t0

dtn−1 V̂I(tn−1) · · ·

t2
∫

t0

dt1 V̂I(t1)



 = (10)

= V̂I(tn = t)×



(−i)n−1

tn=t
∫

t0

dtn−1 V̂I(tn−1) · · ·

t2
∫

t0

dt1 V̂I(t1)



 .

In other words, i∂/∂t of the nth term is V̂I(t)× the (n− 1)st term. Consequently, the whole

series satisfies eq. (8).

Thanks to the time ordering of the V̂I(t) in each term of the Dyson series — the earliest

operator being rightmost so it acts first, the second earliest being second from the right,

etc., etc., until the latest operator stands to the left of everything so it acts last — we may

rewrite the integrals in a more compact form using the time-orderer T. Earlier in class, I

have defined T of an operator product, but now I would like to extend this by linearity to

any sum of operators products. Similarly, we may time-order integrals of operator products

and hence products of integrals such as

T





t
∫

t0

dt′ V̂I(t
′)





2

def
= T

t
∫∫

t0

dt1 dt2 V̂I(t1)V̂I(t2)
def
=

t
∫∫

t0

dt1 dt2TV̂I(t1)V̂I(t2)

=

∫∫

t0<t1<t2<t

dt1 dt2 V̂I(t2)V̂I(t1) +

∫∫

t0<t2<t1<t

dt1 dt2 V̂I(t1)V̂I(t2)

(11)
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where the domain of each dt1 dt2 integral is color-coded on the diagram below:

t1

t2

t0

t0

t

t

t1 > t2

t2 > t1

(12)

Integral over the blue triangle t0 < t1 < t2 < t is what appears in the Dyson series. But there

is t1 ↔ t2 symmetry between the blue and red triangles, and the corresponding integrals

on the bottom line of eq. (11) are equal to each other. Hence the triangular integral in the

Dyson series may be written in a more compact form as

∫∫

t0<t1<t2<t

dt1 dt2 V̂I(t2)V̂I(t1) =
1

2
T





t
∫

t0

dt′ V̂1(t
′)





2

. (13)

Similar procedure applies to the higher-order terms in the Dyson series. The nth order

term is an integral over a simplex t0 < t1 < t2 < · · · < tn < t in the (t1, . . . , tn) space.

A hypercube t0 < t1, . . . , tn < t contains n! such simplexes, and after time-ordering the V̂

operators, integrals over all simplexes become equal by permutation symmetry. Thus,

∫

· · ·

∫

t0<t1<···<tn<t

dtn · · · dt1 V̂I(tn) · · · V̂I(t1) =
1

n!

t
∫

· · ·

∫

t0

dtn · · ·dt1TV̂I(tn) · · · V̂I(t1)

=
1

n!
T





t
∫

t0

dt′ V̂1(t
′)





n

. (14)

Altogether, the Dyson series becomes a time-ordered exponential

ÛI(t, t0) = 1 +
∞
∑

n=1

(−i)n

n!
T





t
∫

t0

dt′ V̂I(t
′)





n

≡ T-exp



−i

t
∫

t0

dt′ V̂I(t
′)



 . (15)
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Of particular interest is the evolution operator from the distant past to the distant future,

Ŝ
def
= ÛI(+∞,−∞) = T-exp



−i

+∞
∫

−∞

dt′ V̂I(t
′)



 . (16)

This operator is properly called ‘the scattering operator’ or ‘the S–operator’, but everybody

calls it ‘the S–matrix’. In the scalar field theory where

V̂I(t) =
λ

24

∫

d3x Φ̂4
I(x, t), (17)

the S–matrix has a Lorentz-invariant form

Ŝ = T-exp









−iλ

24

∫

whole

spacetime

d4x Φ̂4
I(x)









. (18)

Note that Φ̂I(x) here is the free scalar field as in eq. (5). Similar Lorentz-invariant expressions

exist for other quantum field theories. For example, in QED

Ŝ = T-exp









+ie

∫

whole

spacetime

d4x Âµ
I (x)Ψ̂I(x)γµΨ̂I(x)









(19)

where both the EM field Âµ
I (x) and the electron field ΨI(x) are in the interaction picture so

they evolve with time as free fields.

S–Matrix Elements

The S-matrix elements 〈out| Ŝ |in〉 should be evaluated between physical incoming and

outgoing 2-particle (or n-particle) states. In the potential scattering theory, the potential V̂

becomes irrelevant when all particles are far away from each other, so the asymptotic states

|in〉 and 〈out| are eigenstates of the free Hamiltonian Ĥ0.
⋆

But in quantum field theory,

⋆ Strictly speaking, the asymptotic states are wave packets moving in space due to Ĥ0. But once we
take the limit of infinitely large distance asymptotic between wave packets for different particles in
distance past / future, we may then make the wave packets themselves very thick in space but having
very narrow ranges of momenta and energies. In this limit, the asymptotic states become eigenvalues
of the free Hamiltonian Ĥ0.
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the perturbation V̂ is always relevant, and the asymptotic n–particle states |k1, . . . , kn〉

of the interacting field theory are quite different from the free theory’s n–particle states

â†kn

· · · â†k1
|0〉. Even the physical vacuum |Ω〉 is different from the free theory’s vacuum |0〉.

In the spring semester, we shall learn how to obtain the physical S–matrix elements

〈out| Ŝ |in〉 from the correlation functions of fully-interacting quantum fields,

Fn(x1, . . . , xn) = 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉 (20)

— and also how to calculate those correlation functions in perturbation theory. But this

semester, I am taking a short-cut: I will explain the perturbation theory for the naive S-

matrix elements

〈

free : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ free : k1, k2, . . .
〉

= 〈0| · · · âk′

2
âk′

1
Ŝ â†k1â

†
k2
· · · |0〉 (21)

between the 2-particle (or n-particle) states of the free Hamiltonian Ĥ0, and then I will

tell you — without proof — how to modify the perturbative expansion to obtain the S-

matrix elements between the physical asymptotic states. In terms of the Feynman diagrams

(which are explained below), the modification amounts to simply skipping some diagrams

that contribute to the naive S-matrix elements (21) but cancel out from the physical matrix

elements

〈

out : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ in : k1, k2, . . .
〉

(22)

Vacuum Sandwiches and Feynman Diagrams

The perturbation theory starts by expanding the Ŝ operators (18) — and hence its

matrix elements (21) — into a power series in the coupling constant λ:

Ŝ =

∞
∑

n=0

(−iλ)n

(4!)n n!

∫

d4z1 · · ·

∫

d4znT Φ̂4
I(z1) · · · Φ̂

4
I(zn)

=
⇒

〈

free : k′1, k
′
2 . . .

∣

∣ Ŝ |free : k1, k2, . . .〉 =

=
∞
∑

n=0

(−iλ)n

(4!)n n!

∫

d4z1 · · ·

∫

d4zn
〈

free : k′1, k
′
2 . . .

∣

∣TΦ̂4
I(z1) · · · Φ̂

4
I(zn)

∣

∣ free : k1, k2, . . .
〉

.

(23)
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Our first task is to learn how to calculate the matrix elements in the integrands here, or

more generally, the matrix elements of time-ordered products of free fields Φ̂I(x) between

eigenstates of the free Hamiltonian. As a warm-up exercise, let’s start with the ‘vacuum

sandwiches’

〈0|T Φ̂I(x1) . . . Φ̂I(xn) |0〉

of n = 2, 4, 6, . . . free fields.

For n = 2, the field product Φ̂I(x)Φ̂I (y) contains products of two creation or annihilation

operators. As discussed in class, the only products that contribute to the vacuum sandwich

〈0| Φ̂I(x)Φ̂I(y) |0〉 are âpâ
†
p for the same p, hence 〈0| Φ̂I(x)Φ̂I (y) |0〉 = D(x − y). After

time-ordering of the two fields, this gives us the Feynman propagator

〈0|TΦ̂I(x)Φ̂I(y) |0〉 = GF (x− y). (24)

For n = 4, the field product Φ̂I(x)Φ̂I(y)Φ̂I(z)Φ̂I (w) contains products of four creation or

annihilation operators. There are 24 = 16 types of such products, but only 3 contribute to

the vacuum sandwich 〈0| Φ̂I(x)Φ̂I (y)Φ̂I(z)Φ̂I(w) |0〉, and only when two of the 4 momenta

are coincident. Specifically,

〈0|
(

âp ∈ Φ̂I(x)
)(

â†p ∈ Φ̂I(y)
)(

âq ∈ Φ̂I(z)
)(

â†q ∈ Φ̂I(w)
)

|0〉 → D(x− y)×D(z − w),

〈0|
(

âp ∈ Φ̂I(x)
)(

âq ∈ Φ̂I(y)
)(

â†q ∈ Φ̂I(z)
)(

â†p ∈ Φ̂I(w)
)

|0〉 → D(x− w)×D(y − z),

〈0|
(

âp ∈ Φ̂I(x)
)(

âq ∈ Φ̂I(y)
)(

â†p ∈ Φ̂I(z)
)(

â†q ∈ Φ̂I(w)
)

|0〉 → D(x− z)×D(y − w),

(25)

hence

〈0| Φ̂I(x)Φ̂I(y)Φ̂I(z)Φ̂I (w) |0〉 = (26)

= D(x− y)×D(z − w) + D(x− w)×D(y − z) + D(x− z)×D(y − w).

After time ordering of the 4 fields, the D-functions become Feynman propagators, thus

〈0|TΦ̂I(x)Φ̂I(y)Φ̂I(z)Φ̂I (w) |0〉 = (27)
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= GF (x− y)×GF (z − w) + GF (x− w)×GF (y − z) + GF (x− z)×GF (y − w).

Diagrammatically, we may summarize this expression as











x y

z w











+











x y

z w











+











x y

z w











(28)

where each line stands for the Feynman propagator GF (one end − other end) and each

diagram in () is the product of 2 propagators for its 2 lines.

In the same spirit, for n = 6 fields we would have diagrams with 3 lines connecting

6 points, for n = 8 diagrams have 4 lines connecting 8 points, etc., etc. Each diagram

corresponds to a different arrangement of n points into n/2 pairs, thus

〈0|TΦ̂I(x1) · · · Φ̂I(xn) |0〉 =
∑

pairings





∏

pairs

GF

(

xfirstin pair − xsecondin pair

)



 . (29)

Note that the number of pairings one has to sum over — i.e., the number of diagrams —

grows rather rapidly with the number n of fields in the vacuum sandwich:

#pairings =
n!

2n/2 (n/2)!
=











































1 for n = 2,

3 for n = 4,

15 for n = 6,

105 for n = 8,

945 for n = 10,

. . . . . . . . . . . . . .

(30)

For the non-vacuum matrix elements

〈

free : k′1, k
′
2 . . .

∣

∣TΦ̂I(z1) · · · Φ̂I(zn)
∣

∣ free : k1, k2, . . .
〉

=

= 〈0| · · · â
k′

2
â
k′

1
TΦ̂I(z1) · · · Φ̂I(zn) â

†
k1
â†k2

· · · |0〉
(31)

we have even more pairings. Besides pairing creation and annihilation operators contained

in the n free fields, we may pair a creation operator â†
k
for one of the incoming particles with
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a matching âk in one of the fields, or an annihilation operator âk′ for one of the outgoing

particles with a matching â†k′ in one of the fields, or even a creation operator for an incoming

particle with an annihilation operator for an outgoing particles (if they happen to have equal

momenta). Diagrammatically, such pairs are represented by different types of lines:

internal lines
x y

for Φ̂I(x)Φ̂I(y) pairs → GF (x− y),

incoming lines
k x

for Φ̂I(x) â
†
k
pairs → e−ikx,

outgoing lines
x k′

for â
k′ Φ̂I(x) pairs → e+ik′x,

non-stop lines
k k′

for âk′ â
†
k pairs → 2Ek(2π)

3δ(3)(k− k′),

(32)

where the exponential factors e−ikx and e+ik′x for the incoming and outgoing lines follow

from the expansion of a free field into creation and annihilation operators,

Φ̂I(x) =

∫

d3p

(2π)3
1

2Ep

(

e−ipxâp + e+ipxâ†p

)

. (33)

Thus, to calculate a matrix element like (31), we draw all possible diagrams where n vertices

at x1, . . . , xn are connected to each other and to the incoming and outgoing particles by

various lines, multiply the line factors from the right column of the table (32), and then

total up such products for all the diagrams,

〈0| · · · â
k′

2
â
k′

1
TΦ̂I(z1) · · · Φ̂I(zn) â

†
k1
â†
k2

· · · |0〉 =
∑

diagrams

∏

lines

line factors from table (32).

(34)

Thus far, I have put each free field Φ̂I(zi) at its own location zi. But in the perturbative

expansion (23), there are 4 fields at each zi. When all 4 of them are paired up with other

fields or incoming / outgoing particles, we end up with 4 lines connected to the same vertex

at zi. In other words, the vertices in the diagrams for the perturbative expansion have

valence = 4.

Moreover, for evaluating a diagram it does not matter which of the four Φ̂I(zi) is paired

up with which other field or incoming / outgoing particle, all that matter is the pattern of
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connections. Consequently, each diagram describes many nominally distinct but physically

equivalent pairings, so the number of in-equivalent diagrams contributing to a matrix element

〈0| · · · â
k′

2
â
k′

1
TΦ̂4

I(z1) · · · Φ̂
4
I(zn) â

†
k1
â†
k2

· · · |0〉 (35)

is much smaller than the total number of pairings (30) of N = 4n+#incoming+#outgoing

operators. For example, for the matrix element

〈0| â
k′

2
â
k′

1
Φ̂4
I(z) â

†
k1
â†k2

|0〉 (36)

there are 8 operators ââΦ̂Φ̂Φ̂Φ̂â†â† and hence 105 pairings, although without the un-physical

â†â† or ââ pairs this number is reduced to 78. But all these 78 pairings make for only 7

different diagrams shown in table ? on the next page.

For each diagram, the table lists the number of pairings — which multiplies the overall

contribution of the diagram to the matrix element — and the number of graphical symmetries

due to permutations of similar lines (connected to same vertices) or of two ends of the same

line that happen to be connected to the same vertex. Note that for each diagram

#pairings×#symmetries = 24 = 4!. (39)

At the next order of perturbation theory, the matrix element

〈0| â
k′

2
â
k′

1
TΦ̂4

I(z1)Φ̂
4
I(z2) â

†
k1
â†k2

|0〉 (40)

involves 8610 pairings but only 33 distinct diagrams. I am not going to list all 33 diagrams

here, but the table (38) on the next page shows two examples. This time, the number

of pairings and the number of graphic symmetries for each diagram — including the 31

diagrams I do not list — are related as

#pairings×#symmetries = 1152 = 2× (4!)2. (41)

Note: the symmetries include permutations of similar vertices since at the end of the day I

am going to integrate both z1 and z2 over the whole spacetime. However, the external lines

(incoming or outgoing) should not be permuted since the incoming or outgoing particles may

be distinguished by their momenta.
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k1

k2

k′1

k′2

24 pairings 1 symmetries

k1

k2

k′1

k′2

12 pairings 2 symmetries

k1

k2

k′1

k′2

12 pairings 2 symmetries

k1

k2

k′1

k′2

12 pairings 2 symmetries

k1

k2

k′1

k′2 12 pairings 2 symmetries

k1

k2

k′1

k′2
3 pairings 8 symmetries

k1

k2

k′1

k′2
3 pairings 8 symmetries

(37)

k1

k2

k′1

k′2

576 pairings 2 symmetries

k1

k2

k′1

k′2
24 pairings 48 symmetries

(38)
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At higher orders n of perturbation theory, we generally have

∀diagram, #pairings =
n!× (!)n

#symmetries
. (42)

Combining this combinatorial factor for a diagram with the overall coefficient

(−iλ)n

n! (4!)n
(43)

for the nth order term in the perturbative expansion (23), we find the product of lines for

each diagram should be multiplied by

(−iλ)n

#symmetries
. (44)

Attributing the numerator here to the n vertices of the diagram, we arrive at the following

Feynman rules: To calculate the matrix element

〈

free : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ free : k1, k2, . . .
〉

(45)

in the λΦ4 theory to order Nmax of perturbation theory,

1. Draw all diagrams with n = 1, 2, . . . , Nmax vertices labeled z1 through zn and any

pattern of lines obeying the following requirements: (1) an incoming (or non-stop)

line for each incoming particle, (2) an outgoing (or non-stop) line for each outgoing

particle, (3) each vertex is connected to 4 lines (internal, incoming, or outgoing.

Make sure to draw all diagrams obeying these conditions.

2. For each diagram, multiply together the following factors:

• (−iλ) for each vertex z1, . . . , zn;

⋆ GF (zi − zj) for an internal line connecting vertices zi and zj .

⋆ exp(−ikz) for an incoming line connecting an incoming particle with momentum

kµ to the vertex z;
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⋆ exp(+ik′z) for an outgoing line connecting vertex z to an outgoing particle with

momentum k′µ;

⋆ 〈k′|k〉 = 2Ek(2π)
3δ(3)(k′ − k) for a non-stop line;

⋄ the symmetry factor 1/#symmetries of the diagram.

3. For each diagram,
∫

d4z1 · · ·
∫

d4zn over the locations of all the vertices.

4. Total up the diagrams.

Vacuum Bubbles

The above Feynman rules give us S-matrix elements between 2-particle or m-particle

eigenstates of the free Hamiltonian Ĥ0. The S-matrix elements between the physical asymp-

totic states are related to these as

〈

out : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ in : k1, k2, . . .
〉

=
〈

free : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ free : k1, k2, . . .
〉

×

× Cvac ×
∏

incoming

particles

F (ki)×
∏

outgoing

particles

F (k′i)
(46)

where Cvac is a common overall factor for all matrix elements while the F (k) factors depends

on the momenta of incoming and outgoing particles, but each factor depends on only one

particle’s momentum. All factors on the right hand side of eq. (46) are badly divergent and

need to be regularized, so eq. (46) is just a short-hand for a more accurate formula

〈

out : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ in : k1, k2, . . .
〉

= lim
reg→away

〈

free : k′1, k
′
2 . . .

∣

∣ Ŝ
∣

∣ free : k1, k2, . . .
〉

reg
×

× Cvac(reg)×
∏

incoming or

outgoing

particles

F (ki or k
′
i, reg).

(47)

In the Spring semester, I shall explain where this formula is coming from and how to regulate

various divergences. For the moment, let’s ignore the divergences and focus on formal sums

of Feynman diagrams.
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The Cvac factor in eq. (46) appears in all S-matrix elements, even in the vacuum-to-

vacuum element

〈Ω| Ŝ |Ω〉 = 〈0| Ŝ |0〉 × Cvac . (48)

Since in any theory with stable vacuum state 〈Ω| Ŝ |Ω〉 = 1, it follows that

1

Cvac
= 〈0| Ŝ |0〉 =

∑

vacuum diagrams (49)

— i.e., Feynman diagrams without any incoming, outgoing, or non-stop lines. Some vacuum

diagrams are connected (any two vertices are connected to each other through some sequence

of lines) while others comprise two or more disconnected bubbles (each bubble is internally

connected but there are no connections between the bubbles), for example

z1 z2 z3 z4 (50)

When evaluating a disconnected diagram, integrals
∫

d4z within one bubble do not depend

on vertices in other bubbles, so we may evaluate each bubble as a standalone diagram, and

then simply multiply the bubbles together,

for D = B1 ⊕ B2 ⊕ · · · ⊕ Bm , eval(D) = eval(B1)× eval(B2)× · · · × eval(Bm). (51)

Actually, the factorization of disconnected diagrams is slightly more complicated due to

symmetry factors. Evaluating bubbles as standalone diagrams accounts for symmetries in-

volving permutations of similar vertices, lines, or line ends within the same bubble, but when

a disconnected diagram like (50) has two or more similar bubbles, then permuting the whole

bubbles creates extra symmetries. Accounting for those extra symmetries gives us

eval
(

D = B1 ⊕ B2 ⊕ · · · ⊕ Bm

)

=
eval(B1)× eval(B2)× · · · × eval(Bm)

#permutations of similar bubbles
. (52)

Using this formula, we may re-organize the formal sum over vacuum diagrams in eq. (49)
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into a power series in connected vacuum bubbles B:

1

Cvac
= 1 +

bubbles
∑

B

eval(B) +

∞
∑

m=2

bubbles
∑

B1,...Bm

eval(B1)× · · · × eval(Bm)

#bubble permutations
. (53)

Now consider the perturbative expansion of a non-vacuum S-matrix element such as

〈

free : k′1, k
′
2

∣

∣ Ŝ
∣

∣ free : k1, k2
〉

=

diagrams with 4
external lines

∑

D

eval(D). (54)

The sum here is over all diagrams with 4 external lines (two incoming and 2 outgoing),

including both connected and disconnected diagrams. In a disconnected diagram, each

connected component must have an even number of external lines, so ether one component

has all 4 external lines and the rest are vacuum bubbles, or two components have two external

lines apiece, and the rest are vacuum bubbles,

D = C ⊕ B1 ⊕ · · · ⊕ Bm or D = C1 ⊕ C2 ⊕ B1 ⊕ · · · ⊕ Bm , (55)

for example

k1

k2

k′1

k′2

z1 z2 z3 z4 z5

(56)

or

k1

k2

k′1

k′2

z1

z2

z3 z4 z5 z6

(57)

Again, evaluating a disconnected diagram like that amounts to evaluating each connected

part as a standalone diagram, multiplying them together, and then dividing by an extra
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symmetry factor due to permutations of similar parts. Since the external lines are not

permuted, the extra symmetries comes from permuting similar vacuum bubbles only, thus

eval(C ⊕ B1 ⊕ · · · ⊕ Bm) = eval(C)×
eval(B1)× · · · × eval(Bm)

#permutations of similar bubbles
,

eval(C1 × C2 ⊕ B1 ⊕ · · · ⊕ Bm) = eval(C1)× eval(C2)×
eval(B1)× · · · × eval(Bm)

#permutations of similar bubbles
.

(58)

Consequently, when in eq. (54) we sum over all diagrams — connected or disconnected —

with 4 external lines, the sum factorizes into a sum of bubble-less diagrams (connected or

two-component) and a sum over vacuum bubbles:

all diagrams with

4 external lines
∑

D

eval(D) =

4 external lines,

no vacuum bubbles
∑

C or C1⊕C2

eval(C or C1 ⊕ C2)

+

4 external lines,

no vacuum bubbles
∑

C or C1⊕C2

∞
∑

m=1

bubbles
∑

B1,...,Bm

eval(C or C1 ⊕ C2)×
eval(B1)× · · · × eval(Bm)

#bubble permutations

=

4 external lines,

no vacuum bubbles
∑

C or C1⊕C2

eval(C or C1 ⊕ C2)×

×



1 +
∞
∑

m=1

bubbles
∑

B1,...,Bm

eval(B1)× · · · × eval(Bm)

#bubble permutations



 .

(59)

Moreover, the second factor here is precisely the sum (53) for the 1/Cvac factor, hence

Cvac ×
〈

free : k′1, k
′
2

∣

∣ Ŝ
∣

∣ free : k1, k2
〉

=

4 external lines,

no vacuum bubbles
∑

C or C1⊕C2

eval(C or C1 ⊕ C2) (60)

Likewise, for any number of the incoming or outgoing particles, we may the overall Cvac factor

in eq. (46) for the physical S-matrix element by simply skipping the Feynman diagrams with

any vacuum bubbles,

Cvac ×
〈

free : k′1, k
′
2, . . .

∣

∣ Ŝ
∣

∣ free : k1, k2, . . .
〉

=
∑

[

Feynman diagrams with appropriate exter-

nal lines and without any vacuum bubbles.

]

(61)

Besides the vacuum bubbles, there are other types of ‘bad diagrams’ which do not con-
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tribute to physical S-matrix elements. But the reason those diagrams are ‘bad’ depends on

momentum conservation, so let me first re-formulate the Feynman rules in momentum space.

Momentum Space Feynman Rules

Consider an internal line connecting vertices x and y of some diagram. The Feynman

propagator corresponding to this line is

GF (x− y) =

∫

d4q

(2π)4
ie−iq(x−y)

q2 −m2 + iǫ
. (62)

In coordinate-space Feynman rules we saw earlier in these notes, we should evaluate all

such propagators before integrating over the vertex locations
∫

d4x
∫

d4y · · ·. But let’s change

the order of integration: Once we spell all propagators as momentum integrals (62), let’s

integrate over the vertex locations before we integrate over the momenta in propagators.

For a fixed momentum qµ, the integrand of the Feynman propagator (62) depends on

the vertex locations x and y as e−iqx × e+iqy — for each vertex, the location-dependent

factor is simply e−iqx or e+iqy. Similar exponential factors e−ikz or e+ik′z accompany the

external (incoming or outgoing) lines connected to a vertex z. Thus, each line connected to

a vertex depends on its location as e±ipz where p = q, k, k′, depending on the type of the

line. Combining 4 lines (internal or internal) connected to the same vertex, we have

e±ip1z × e±ip2z × e±ip3z × e±ip4z, (63)

and nothing else in the diagram depends on that vertex’s location z. Consequently, integrat-

ing over z produces a delta-function in momenta,

∫

d4z e±ip1z e±ip2z e±ip3z e±ip4z = (2π)4δ(4)(±p1 ± p2 ± p3 ± p4). (64)

These delta-functions lead to the Kirchhoff Current Law for momenta in a Feynman diagram.

Think of a Feynman diagram as an electric circuit: the vertices are circuit junctions, the

lines are conducting elements, and the momenta qµ, kµ, or k′µ are currents flowing through

those elements. The net currents flowing in and out of any junction must balance each other,

and that’s precisely what eqs. (64) say about the momenta: the net momenta flowing in or

out of any vertex must balance each other.
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So here are the momentum-space Feynman rules for evaluating a diagram:

1. First of all, assign momenta to all lines of the diagram: fixed momenta kµ and k′µ for

the incoming and outgoing lines, and it variable momenta qµ for the internal lines.

For each internal line, choose a direction in which its momentum qµ flows from one

vertex into another; use arrows to indicate the directions of momentum flow. For the

external lines, the directions are fixed: inflow for incoming particles’ lines, and outflow

for the outgoing particles’ lines.

kµ k′µ
qµ

2. Multiply the following factors:

•
i

q2 −m2 + iǫ
for each internal line, but not for the external lines.

• (−iλ) × (2π)4δ(4)(±q1 ± q2 ± q3 ± q4) for each vertex. Here qµ1 , . . . , q
µ
4 stand for

momenta of 4 lines connected to the vertex; some of them may be kµ or k′µ if the

lines are external rather than internal. The sign of each qµ is + if the momentum

flows into the vertex and − if it flows out.

⋆ Combinatorial factor for the whole diagram, 1/#symmetries.

3. Integrate

∫

d4q

(2π)4
over all internal lines’ momenta.

⋆ Most of momentum integrals for internal lines are ‘eaten-up’ by the δ-functions in the

vertices leading to the Kirchhoff Current Law for the momenta. Ultimately, there is one

non-trivial

∫

d4q

(2π)4
integral for each closed loop in the diagram, and one un-integrated

(2π)4δ(4)(
∑

momenta) for each connected component of the diagram.

Here are some examples:

k1

k2

p1

p2

= (−iλ)× (2π)4δ(4)(k1 + k2 − p1 − p2) (65)
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k1

k2

p4

p3

p2

p1

q

=

∫

d4q

(2π)4
i

q2 −m2 + iǫ
× (−iλ)(2π)4δ(4)(k1 − q − p1 − p2)

× (−iλ)(2π)4δ(4)(k2 + q − p3 − p4)

= (2π)4δ(4)(k1 + k2 − p1 − p2 − p3 − p4)×
−iλ2

q2 −m2

∣

∣

∣

∣

q=k1−p1−p2=p3+p4−k2

(66)

q2

q1k1

k2

p1

p2

=

∫

d4q1

(2π)4
i

q21 −m2 + iǫ
×

∫

d4q2

(2π)4
i

q22 −m2 + iǫ
×

1

2

× (−iλ) (2π)4δ(4)(k1 + k2 − q1 − q2)

× (−iλ) (2π)4δ(4)(q1 + q2 − p1 − p2)

= (2π)4δ(4)(k1 + k2 − p1 − p2)×
λ2

2
×

∫

d4q1

(2π)4
1

q21 −m2 + iǫ

1

(k1 + k2 − q1)2 −m2 + iǫ

(67)

k1 p1

q1

k2 p2

q2

=

∫

d4q1

(2π)4
i

q21 −m2 + iǫ
×

∫

d4q2

(2π)4
i

q22 −m2 + iǫ
×

1

4

× (−iλ) (2π)4δ(4)(k1 + q1 − q1 − p1)

× (−iλ) (2π)4δ(4)(k2 + q2 − q2 − p2)

= (2π)4δ(4)(k1 − p1)× (2π)4δ(4)(k2 − p2)×
λ2

4
×

[∫

d4q

(2π)4
1

q2 −m2 + iǫ

]2

(68)

19



Connected Diagrams

In a scattering experiment, most of the times the particles miss each other and do not

scatter at all. In the formal scattering theory, this corresponds to decomposition

Ŝ = 1 + iT̂ (69)

where the T̂ operator takes care of the scattering events that do happen every now and then.

For a 2 body → 2 body process involving identical bosons, this means

〈

in : k′1, k
′
2

∣

∣ Ŝ
∣

∣ out : k1, k2
〉

=
〈

k′1|k1
〉

×
〈

k′2|k2
〉

+
〈

k′1|k2
〉

×
〈

k′2|k1
〉

+ i
〈

in : k′1, k
′
2

∣

∣ T̂
∣

∣ out : k1, k2
〉

.
(70)

Diagrammatically, this formula corresponds to distinguishing between connected and dis-

connected diagrams. Note that while we have ruled out the vacuum bubbles, we still allow

disconnected diagrams where each connected piece has some external lines. For two incoming

and two outgoing particles, this allows for 4 topologically different classes of diagrams:















k1 k′

1

k2 k′

2















,















k1 k′

1

k2 k′

2















,















k1 k′

1

k2 k′

2















,















k1 k′

1

k2 k′

2















,

(71)

where each yellow circle stands for a connected diagram or sub-diagram. For the first type

of diagrams, each connected sub-diagram imposes its own energy-momentum conservation

— k′1 = k1, k
′
2 = k2 or else the diagram = 0. In the S-matrix decomposition (70), such

diagrams corresponds to the first non-scattering term 〈k′1|k1〉 × 〈k′2|k2〉. Or rather, the sum

of such diagrams — times the external-line factors F (k) and F (k′) from eq. (46) for the

physical S-matrix elements — produces that non-scattering term,

F (k1)× F (k′1)×
∑ k1 k′1

=
〈

out : k′1
∣

∣ Ŝ
∣

∣ in : k2
〉

=
〈

k′1|k1
〉

, (72)
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likewise for the k2 → k′2 process, and therefore

F (k1)F (k
′
1)F (k2)F (k

′
2)×

∑







k1 k′

1

k2 k′

2






=

〈

k′1|k1
〉

×
〈

k′2|k2
〉

. (73)

Similarly, the diagrams of the second disconnected type on figure (71) require k′2 = k1,

k′1 = k2, so they contribute to the second non-scattering term 〈k′2|k1〉×〈k′1|k2〉 in eq. (70). As

to the third disconnected type of diagrams from figure (71), they require k1+k2 = k′1+k
′
2 = 0,

which is quite impossible on-shell. Indeed, the net energy of physical particles is always

positive and cannot vanish. Consequently, the diagrams of the third disconnected type do

not contribute to the S-matrix element at all.

On the other hand, the connected diagrams — the fourth type on figure (71) — impose

the overall energy–momentum conservation

k′µ1 + k′µ2 = kµ1 + kµ2 (74)

but allow for scattering in which this net energy and momentum is re-distributed between

the two particles. For example, in the center-of-mass frame we may have

kµ1,2 = (E,±k), k′µ1,2 = (E,k′) (75)

for k′ having the same magnitude as k but a different direction. Thus, it’s the connected

Feynman diagrams which are solely responsible for the scattering! Formally,

i
〈

in : k′1, k
′
2

∣

∣ T̂ | out : k1, k2〉 = F (k1)F (k
′
1)F (k2)F (k

′
2)×

∑

[

Connected diagrams
with 4 external lines

]

, (76)

where the F (k) factors for the external lines may be extracted from eq. (72):

〈k′|k〉

F 2(k)
=

∑

[

Connected diagrams
with 2 external lines

]

. (77)

We shall return to the F (k) factors in the Spring semester. For the moment, let me simply

say that to the lowest order of perturbation theory F (k) = 1.
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Scattering Amplitudes

According to momentum-space Feynman rules, a connected diagram has precisely one

un-canceled delta function of momenta enforcing the overall energy-momentum conserva-

tion (74), but all the other factors are analytic functions of the incoming and outgoing

momenta. Hence, the sum of connected diagrams in eq. (76) for the T-matrix element

produces

i
〈

in : k′1, k
′
2

∣

∣ T̂ | out : k1, k2〉 = (2π)4δ(4)(k′1 + k′2 − k1 − k2)× iM(k1, k2 → k′1, k
′
2) (78)

for some analytic function of momentaM called the scattering amplitude, or to be precise, the

relativistically normalized scattering amplitude. It differs from the non-relativistic amplitude

f you have learned about in an undergraduate QM class by an overall factor

f =
M

8πEcm
(79)

where Ecm is the net energy of both incoming particles (or both outgoing particles) in the

center of mass frame. As explained in painful detail in §4.5 of the Peskin and Schroeder

textbook, the partial cross-section for an elastic 2 body → 2 body scattering is

dσ

dΩcm
=

|M|2

64π2E2
cm

(80)

where dΩcm is the element of body angle for the direction of one of the final particles in the

CM frame (the other final particle flies in the opposite direction).

At the lowest order of perturbation theory, the scattering amplitude M is particularly

simple. Indeed, for n = 1 there is only one connected diagram with 4 external lines, namely

k1

k2 k′2

k′1

= −iλ× (2π)4δ(4)(k′1 + k′2 − k1 − k2). (81)

Dropping the net energy-momentum conservation factor, we obtain the scattering amplitude
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as simply

iM = −iλ =⇒ M = −λ ∀momenta. (82)

Consequently, to the lowest order of perturbation theory, the partial scattering cross-section

dσ

dΩcm
=

λ2

64π2E2
cm

(83)

is isotropic, and the total scattering cross-section is

σtot =
4π

2
×

λ2

64π2E2
cm

=
λ2

32π E2
cm

. (84)

Note: since the two outgoing particles are identical bosons and we cannot tell which particle

goes up and which goes down, the net solid angle for one of the two opposite directions is

4π/2 rather than the whole 4π.

Alas, at the higher orders of perturbation theory, the O(λ2), O(λ3), etc., terms in the

scattering amplitude are much more complicated than the leading term −λ. And in theories

other than λΦ4, even the lowest-order scattering amplitudes are fairly complicated functions

of the particles’ energies and directions.

Summary

I conclude these notes with the summary of Feynman rules for the λΦ4 theory. To obtain

the scattering amplitude for a 2 particle → 2 particle or 2 particle → m particle process to

order N in perturbation theory:

1. Draw all connected Feynman diagrams with 2 incoming and m outgoing lines, and

n ≤ N vertices. Each vertex must be connected to precisely 4 lines, external or

internal.

Make sure you draw all the diagrams obeying these conditions.

2. Evaluate the diagrams. For each diagram:

(a) Assign momenta to all the lines: fixed momenta for the incoming and outgoing

lines, and variable momenta for the internal lines. For the internal lines, specify
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the direction of momentum flow (from which vertex to which vertex); the choice

of those directions is arbitrary, but you must stick to the same choice while you

evaluate the diagram.

(b) Multiply the following factors:

•

∫

d4q

(2π)4
i

q2 −m2 + iǫ
for each internal line, but not for the external lines.

• (−iλ)× (2π)4δ(4)(±q1 ± q2 ± q3 ± q4) for each vertex. The sign of each qµ is + if

the momentum flows into the vertex and − if it flows out.

• Combinatorial factor for the whole diagram, 1/#symmetries.

(c) Do the integrals over the momenta qµ of internal lines.

Many of these integrals will be ‘eaten up’ by the δ-functions at the vertices, but

for each closed loop in the graph there is one un-eaten
∫

d4q integral that needs to

be calculated the hard way.

(d) Drop the overall energy-momentum conservation factor (2π)4δ(4)
(

k1+k2−
∑

k′
)

.

3. Total up the diagrams.

4. If you are working beyond the lowest non-vanishing order of perturbation theory, mul-

tiply the whole amplitude by the F (k) factors for each of the incoming or outgoing

particles.

These rules should give you the (relativistically normalized) scattering amplitudeM(k1, k2 →

k′1, . . . , k
′
m). The partial and total scattering cross sections follow from this amplitude as

dσ = |M|2 × dP (85)

where dP is the phase-space factor. Most generally,

dP =
1

4 |E1k2 −E2k1|
×

m
∏

i=1

d3k′i
(2π)3 2E′

i

× (2π)4δ(4)
(

kµ1 + kµ2 −
∑

k′µ
)

, (86)

which should be integrated over enough final-state parameters to eat up the δ-function. To

find where this phase-space formula comes from please read §4.5 of the Peskin and Schroeder

textbook.
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