
Fermionic Algebra and Fock Space

Earlier in class we saw how harmonic-oscillator-like bosonic commutation relations

[

âα, âβ

]

= 0,
[

â†α, â
†
β

]

= 0,
[

âα, â
†
β

]

= δα,β (1)

give rise to the bosonic Fock space in which the oscillator modes α correspond to

single-particle quantum states |α〉. In this note, we shall see how the fermionic anti-

commutation relations

{

âα, âβ

}

= 0,
{

â†α, â
†
β

}

= 0,
{

âα, â
†
β

}

= δα,β (2)

give rise to the fermionic Fock space. Again, the modes α will correspond to the

single-particle quantum states. For simplicity, I will assume discrete modes — for

example, momenta (and spins) of a free particle in a big but finite box.

Hilbert Space of a Single Fermionic Mode

A single bosonic mode is equivalent to a harmonic oscillator; the relation [â, â†] =

1 gives rise to an infinite-dimensional Hilbert space spanning states |n〉 for n =

0, 1, 2, 3, . . . ,∞. A single fermionic mode is different — its Hilbert space spans just

two states, |0〉 and |1〉. In accordance with the Fermi statistics, multiple quanta in

the same mode are not allowed.

To see how this works, note that the fermionic creation / annihilation operators

â† and â satisfy not just the anti-commutation relation

ââ† + â†â = 1 (3)

between them but also

{â, â} = {â†, â†} = 0 ⇐⇒ ââ = â†â† = 0. (4)

As usual, the number of quanta is measured by the hermitian operator n̂ = â†â. For

the bosons we also had ââ† = n̂ + 1 but for the fermions we now have â†â = 1 − n̂.
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Consequently, for the fermions

n̂(1− n̂) = â†âââ† = 0 because ââ = 0, (5)

which means that all the eigenvalues of n̂ must satisfy n(1 − n) = 0. Thus, the only

allowed occupation numbers for the fermions are n = 0 and n = 1.

The algebra of the fermionic creation / annihilation operators closes in the two-

dimensional Hilbert space spanning |n = 0〉 and |n = 1〉. Specifically,

â |0〉 = 0, (6.a)

â† |0〉 = |1〉 , (6.b)

â |1〉 = |0〉 , (6.c)

â† |1〉 = 0. (6.d)

To see how this works, we first notice that â(1 − n̂) = âââ† = 0 (because ââ = 0)

and â†n̂ = â†â†â = 0 (because â†â† = 0). Also, by definition of the eigenstates |0〉
and |1〉 of n̂, n̂ |1〉 = |1〉 and (1− n̂) |0〉 = |0〉. Consequently,

â |0〉 = â(1− n̂) |0〉 = 0, (6.a)

â† |1〉 = â†n̂ |1〉 = 0. (6.d)

Next, we check that â† |0〉 and â |1〉 are eigenstates of n̂ with respective eigenvalues

1 and 0 as in eqs. (6,b–c):

(n̂ − 1)
(

â† |0〉
)

= −ââ†â† |0〉 = 0 because â†â† = 0,

(n̂ − 0)
(

â |1〉
)

= â†ââ |1〉 = 0 because ââ = 0.
(7)

This means that â† |0〉 ∝ some |1〉 and â |1〉 ∝ some |0〉, but we need to make sure

that applying â to â† |0〉 we get back to the same state |0〉 we stated from, and likewise
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applying â† to â |1〉 brings us back to the original |1〉:

â
(

|1〉 = â† |0〉
)

= ââ† |0〉 = (1− n̂) |0〉 = same |0〉 ,
â†
(

|0〉 = â |1〉
)

= â†â |1〉 = n̂ |1〉 = same |1〉 .
(8)

Finally, to make sure there are no numerical factors in eqs. (6,b–c) let’s check the

normalization: if |1〉 = â† |0〉 then 〈1|1〉 = 〈0| ââ† |0〉 = 〈0| (1− n̂) |0〉 = 1× 〈0, 0〉 and
likewise, if |0〉 = â |1〉 then 〈0, 0〉 =

〈

â†
∣

∣ â |1〉 = 〈1| n̂ |1〉 = 1 × 〈1|1〉. In other words,

both eqs. (6,b–c) as written are consistent with normalized states 〈0|0〉 = 〈1|1〉 = 1.

Multiple Fermionic Modes

Now consider multiple fermionic creation and annihilation operators â†α and âα

that are hermitian conjugates of each other and satisfy the anti-commutation rela-

tions (2). For each mode α we define the occupation number operator

n̂α
def
= â†αâα . (9)

All these operators commute with each other; moreover, each n̂α commutes with

creation and annihilation operators for all the other modes β 6= α. Indeed, using the

Leibniz rules for commutators and anti-commutators

[A,BC] = [A,B]C + B[A,C] = {A,B}C − B{A,C},
[AB,C] = A[B,C] + [A,C]B = A{B,C} − {A,C}B,
{A,BC} = [A,B]C + B{A,C} = {A,B}C − B[A,C],

{AB,C} = A[B,C] + {A,C}B = A{B,C} − [A,C]B,

(10)

we obtain

[

n̂α, âβ
]

=
[

â†αâα, âβ
]

= â†α
{

âα, âβ
}

−
{

â†α, âβ
}

âα = â†α × 0 − δαβ × âα

= −δαβ × âβ → 0 for β 6= α, (11)
[

n̂α, â
†
β

]

=
[

â†αâα, â
†
β

]

= â†α
{

âα, â
†
β

}

−
{

â†α, â
†
β

}

âα = â†α × δαβ − 0× âα

= +δαβ × âβ → 0 for β 6= α, (12)
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[

n̂α, â
†
β âγ

]

= â†β
[

n̂α, âγ
]

+
[

n̂α, â
†
β

]

âγ = −â†β × δαγ âγ + δαβ â
†
β × âγ

=
(

δαβ − δαγ
)

â†β âγ → 0 for β = γ, (13)
[

n̂α, n̂β
]

=
[

n̂α, â
†
β âβ (for same β)

]

= 0. (14)

The fact that all the n̂α commute with each other allows us to diagonalize all of

them at once. This gives us the occupation-number basis of states |set of all nα〉
for the whole Hilbert space of the theory. Similar to the bosonic case, we may use

â†α and âα operators to raise or lower any particular nα without changing the other

occupation numbers nβ ; this means that all the occupation numbers may take any

allowed values independently from each other. However, the only allowed values of

the fermionic occupation numbers are 0 and 1 — multiple quanta in the same mode

are not allowed.

Note that for a finite set of M modes the fermionic Hilbert space has a finite

dimension 2M . This fact is important for understanding the ground state degeneracies

of fermionic fields in some non-trivial backgrounds that have zero-energy fermionic

modes: For M zero modes independent from their hermitian conjugates, the ground

level of the whole QFT has 2M degenerate states.

Fermionic Fock Space

Now suppose there is an infinite but discrete set of fermionic modes α correspond-

ing to some 1–particle quantum states |α〉 with wave functions φα(x). (By abuse of

notations, I am including the spin and the other non-spatial quantum numbers into

x = (x, y, z, spin, etc.).) In this case, the fermionic Hilbert space

F =
⊗

α

Hmodeα (spanning |nα = 0〉 and |nα = 1〉) (15)

has infinite dimension and we may interpret is as a Fock space or arbitrary number

of identical fermions. Indeed, let

N̂ =
∑

α

n̂α (16)

count the net number of fermionic quanta in all the modes, N = 0, 1, 2, 3 . . . ,∞. Let’s
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reorganize F into the eigenblocks of N̂ :

F =

∞
⊕

N=0

HN = H0 ⊕H1 ⊕H2 ⊕H3 ⊕ · · · . (17)

The H0 block here spans a unique state with N = 0, namely the vacuum state |vac〉 =
|all nα = 0〉. The H1 block spans states with a single nα = 1 while all the other nβ =

0. Similar to the bosonic case, we may identify such states |nα = 1; other n = 0〉 =
â†α |vac〉 with the single-particle states |α〉 and hence the H1 block of F with the

Hilbert space of a single particle.

The H2 block of F spans states

∣

∣nα = nβ = 1; other n = 0
〉

= â†αâ
†
β |vac〉 (18)

with α 6= β and only such states — the fermionic Fock space does not allow states

|nα = 2; other n = 0〉 with doubly occupied modes. Note that in eq. (18) exchanging

α ↔ β results in the same physical state but with an opposite sign (because â†α and

â†β anti-commute). To be precise, we define

|α, β〉 def
= â†β â

†
α |vac〉 = − |β, α〉 . (19)

Likewise, the H3 block spans states

|α, β, γ〉 = â†γ â
†
β â

†
α |vac〉 (20)

for 3 different modes α, β, γ, the H4 block spans states

|α, β, γ, δ〉 = â†δâ
†
γ â

†
β â

†
α |vac〉 (21)

for 4 differentmodes α, β, γ, δ, etc., etc. In all cases, the order of the modes α, β, γ, . . .

does not matter physically but affects the overall sign of the state,

|any permutation of α, β, . . . , ω〉 = |α, β, . . . , ω〉 × (−1)parity of the permutation. (22)

Thus, each HN (for N ≥ 2) is a Hilbert space of N identical Fermions.
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A system of two identical fermions has an antisymmetric wavefunction of two ar-

guments, ψ(x1,x2) = −ψ(x2,x1). A complete basis for such wavefunctions comprises

antisymmetric tensor products or single-particle wave-functions

φαβ(x1,x2) =
φα(x1)φβ(x2) − φβ(x1)φα(x2)√

2
= −φαβ(x2,x1). (23)

Note that such wave functions are not only antisymmetric in x1 ↔ x2 but also

separately antisymmetric in α ↔ β, φβα(x1,x2) = −φαβ(x1,x2), so we may identify

them as wave functions of two-fermions states |α, β〉 = â†β â
†
α |vac〉 = − |β, α〉 ∈ H2.

Likewise, a wavefunction of N identical fermions is totally antisymmetric in its

N arguments,

ψ(x1,x2, . . . ,xN ) = ψ(any permutation of x1,x2, . . . ,xN )×(−1)parity of permutation.

(24)

A complete basis for such wavefunctions obtains from totally antisymmetrized prod-

ucts of N different single-particle wave-functions

φα1,...,αN
(x1, . . . ,xN ) =

1√
N !

all permutations
of (α1,...,αN)

∑

(α̃1,...,α̃N )

φα̃1
(x1)× · · · × φα̃N

(xN )× (−1)parity

=
1√
N !

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φα1
(x1) φα2

(x1) · · · φαN
(x1)

φα1
(x2) φα2

(x2) · · · φαN
(x2)

...
...

. . .
...

φα1
(xN ) φα2

(xN ) · · · φαN
(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(25)

The Slater’s determinant here is not only antisymmetric in (x1, . . . ,xN ) but also an-

tisymmetric with respect to the single-particle states (α1, . . . , αN ), so we may identify

it as a wave-function of the N -fermion state

|α1, α2, . . . , αN 〉 = â†αN
· · · â†α2

â†α1
|vac〉 ∈ NN . (26)

To complete the wave-function picture of the Fermionic Fock space, let me spell

out the action of the creation operators â†α and the annihilation operators âα. For any
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N -fermions state |N ;ψ〉 with a totally-antisymmetric wave function ψ(x1, . . . ,xN ),

the state |N + 1;ψ′〉 = â†α |N ;ψ〉 has a totally antisymmetric function of N + 1 vari-

ables

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1
∑

i=1

(−1)N+1−iφα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1) (27)

while the state |N − 1, ψ′′〉 = âα |N,ψ〉 has a totally antisymmetric function of N −1

variables

ψ′′(x1, . . . ,xN−1) =
√
N

∫

d3xN φ∗α(xN )× ψ(x1, . . . ,xN−1,xN ). (28)

The proof of these formulae is left out as an optional exercise to the students.

Thanks to the relations (28) and (27), the Fock-space formulae for the additive

one-body operators work similarly to the bosonic case: If in N-fermion Hilbert spaces

Âtot =
N
∑

i=1

Â1(i
th) (29)

where each Â1(i
th) acts only on the ith particle, then in the Fock space

Âtot =
∑

α,β

〈α| Â1 |β〉 × â†αâβ . (30)

For example, for free non-relativistic electrons in a box with α = (p, s) we have

Ĥtot =
∑

p,s

p2

2m
× â†

p,sâp,s ,

P̂tot =
∑

p,s

p× â†
p,sâp,s ,

Ŝtot =
∑

p,s,s′

〈

1
2 , s

′
∣

∣ Ŝ
∣

∣

1
2 , s

〉

× â†
p,s′ âp,s .

(31)
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Likewise, the two-body additive operators that act in N -fermion spaces as

B̂tot = 1
2

∑

i6=j

B̂2(i
th, jth) (32)

in the Fock space become

B̂tot = 1
2

∑

α,β,γ,δ

Bα,β,γ,δ × â†αâ
†
β âδ âγ 〈〈 note the order! 〉〉

where Bα,β,γ,δ = (〈α| ⊗ 〈β|) B̂2 (|γ〉 ⊗ |δ〉) .
(33)

For example, a spin-blind potential V2(x1 − x2) becomes

V̂tot = 1
2

∑

i6=j

Vs(xi − xj)

=
1

2L3

∑

q

W (q)
∑

p1,p2

∑

s1,s2

â†
p1+q,s1 â

†
p2−q,s2âp2,s2 âp1,s1

where W (q) =

∫

d3xV2(x)e
−iqx.

(34)

Note that while the formulae for this operator in the bosonic and the fermionic Fock

spaces have similar forms, the actual operators are quite different because the two

Fock spaces have different algebras of the creation and annihilation operators and

different quantum states (symmetric vs. antisymmetric). Thus, the physical effect

of similar V2(x1 − x2) potentials for the fermions and for the bosons may be quite

different from each other.

Fermionic Particles and Holes

Consider a system of fermions with a one-body Hamiltonian of the form

Ĥ =
∑

α

Eαâ†αâα + E0 . (35)

When all particle energies Eα are positive, the ground state of the system is the

vacuum state |vac〉 with all nα = 0. In terms of the creation and annihilation op-

erators, |vac〉 can be identified as the unique state killed by all the annihilation op-

erators, âα |vac〉 = 0 ∀α. The excited states of the Hamiltonian (35) are N -particle
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states which obtain by applying creation operators to the vacuum, |α1, . . . , αN 〉 =

â†αN · · · â†α1
|vac〉; the energy of such a state is E = E0 + Eαa

+ · · · EαN
> E0.

Now suppose for a moment that all the particle energies Eα are negative instead

of positive. In this case, adding particles decreases the energy, so the ground state of

the system is not the vacuum but rather the full-to-capacity state

|full〉 = |all nα = 1〉 =
∏

allα

â†α |vac〉 (36)

with energy

Efull = E0 +
∑

allα

Eα . (37)

Never mind whether the sum here is convergent; if it is not, we may add an infinite

constant to the E0 to cancel the divergence. What’s important to us here are the

energy difference between this ground state and the excited states.

The excited states of the system are not completely full but have a few holes.

That is, nα1
= · · · = nαN

= 0 for some N modes (α1, . . . , αN ) while all the other

nβ = 1. The energy of such a state is

E = E0 +
∑

β 6=αa,...,αN

Eβ = Efull −
N
∑

i=1

Eαi
> Efull . (38)

In other words, an un-filled hole in mode α carries a positive energy −Eα.

In terms of the operator algebra, the |full〉 state is the unique state killed by all

the creation operators, â†α |full〉 = 0 ∀α. The holes can be obtained by acting on the

|full〉 state with the annihilation operators that remove one particle at a time. Thus,

|1 hole atα〉 =
∣

∣

∣n̂α = 0; othern = 1
〉

= âα |full〉 (39)

and likewise

|N holes atα1, . . . , αN〉 = âαN
· · · âα1

|full〉 . (40)

Altogether, when the ground state is |full〉, the creation and the annihilation operators

exchange their roles. Indeed, the âα make extra holes in the full or almost-full states

9



while the â†α operators annihilates those holes (by filling them up). Also, the algebraic

definition of the |full〉 and |vac〉 states are related by this exchange: âα |vac〉 = 0 ∀α
vs. â†α |full〉 = 0 ∀α.

To make this exchange manifest, let us define a new family of fermionic creation

and annihilation operators,

b̂α = â†α , b̂†α = âα . (41)

Unlike the bosonic commutation relations (1), the fermionic anti-commutation rela-

tions (2) are symmetric between â and â†, so the b̂α and b̂†α satisfy exactly the same

anti-commutation relations as the âα and â†α,







{

âα, âβ
}

= 0
{

â†α, â
†
β

}

= 0
{

âα, â
†
β

}

= δαβ






⇐⇒







{

b̂α, b̂β
}

= 0
{

b̂†α, b̂
†
β

}

= 0
{

b̂α, b̂
†
β

}

= δαβ






. (42)

Physically, the b̂†α operators create holes while the b̂α operators annihilate holes,

and the holes obey exactly the same Fermi statistics as the original particles. In

condensed-matter terminology, the holes are quasi-particles, but the only distinction

between the quasi-particles and the true particles is that the later may exist out-

side the condensed matter. When viewed from the inside of condensed matter, this

distinction becomes irrelevant.

Anyhow, from the hole point of view, the |full〉 state is the hole vacuum — the

unique state with no holes at all, algebraically defined by b̂α |full〉 = 0 ∀α. The exci-

tations are N -hole states obtained by acting with hole-creation operators b̂†α on the

hole-vacuum, |holes atα1, . . . , αN〉 = b̂†αN · · · b̂†α1
|full〉. And the Hamiltonian opera-

tor (35) of the system becomes

Ĥ = E0 +
∑

α

Eα
(

â†αâα = b̂αb̂
†
α = 1− b̂†αb̂α

)

= Efull +
∑

α

(

−Eα
)

b̂†αb̂α ,
(43)

in accordance with individual holes having positive energies −Eα > 0.
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Thus far, I made no assumptions about the one-particle states corresponding to

modes α. Quite often, they are eigenstates of some conserved quantum numbers such

as momentum or spin (or rather Ŝz). When one makes a hole by removing a particle

from mode (p, s), the net momentum of the system changes by −p while the net Sz

changes by −s, so one can say that the hole in that mode has momentum −p and

Sz = −s. Consequently, the hole operators are usually defined as

b̂
p,s = â†−p,−s , b̂†

p,s = â−p,−s , (44)

which leads to

P̂tot = Pfull +
∑

p,s

p× b̂†
p,sb̂p,s (45)

and likewise

Ŝz
tot = Sz

full +
∑

p,s

s× b̂†p,sb̂p,s . (46)

Finally, consider a system where the energies Eα take both signs: positive for

some modes α but negative for other modes. For example, a free fermion gas with a

positive chemical potential µ and free-energy operator

Ĥ =
∑

p,s

(

p2

2m
− µ

)

â†
p,sâp,s . (47)

has positive E for |p| > pf but negative E for |p| < pf where pf is the Fermi

momentum defined by the threshold (p2f/2m) − µ = 0. For this system the ground

state is the Fermi sea where

np,s = Θ(|p| < pF ) =

{

1 for |p| < pf ,

0 for |p| > pf .
(48)

In terms of the creation and annihilation operators, the Fermi sea is the state

|FS〉 =

|p|<pf only
∏

p,s

â†
p,s |vac〉 (49)
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which satisfies

â
p,s |FS〉 = 0 for |p| > pf and â†

p,s |FS〉 = 0 for |p| < pf . (50)

We may treat this state as a quasi-particle vacuum if we redefine all the operators

killing the |FS〉 as annihilation operators. Thus, we define

b̂p,s = â†−p,−s , b̂†p,s = â−p,−s for |p| < pF only (51)

but keep the original âp,s and â†p,s operators for momenta outside the Fermi surface.

Despite the partial exchange, the complete set or creation and annihilation operators

satisfies the fermionic anticommutation relations:

all {â, â} = {b̂, b̂} = {â, b̂} = 0,

all {â†, â†} = {b̂†, b̂†} = {â†, b̂†} = 0,

all {â, b̂†} = {b̂†, â} = 0,

(52)

— provided we restrict the b̂p,s and the b̂†p,s to |p| < pf only and the âp,s and the

â†p,s to |p| > pf only — while

{

âp,s, â
†
p′,s′

}

= δp,p′δs,s′ and
{

b̂p,s, b̂
†
p′,s′

}

= δp,p′δs,s′ . (53)

The Fermi sea |FS〉 is the quasi-particle vacuum state of these fermionic operators

— it is killed by all the annihilation operators âp,s and b̂p,s in the set. The two

types of creation operators â†p,s and b̂†p,s create two distinct types of quasi-particles

— respectively, the extra fermions above the Fermi surface and the holes below the

surface. Both types of quasi-particles have positive energies. Indeed, in terms of our

new fermionic operators, the Hamiltonian becomes

Ĥ = EFS +

|p|>pf only
∑

p,s

(

p2

2m
− µ > 0

)

×â†
p,sâp,s +

|p|<pf only
∑

p,s

(

µ− p2

2m
> 0

)

×b̂†
p,sb̂p,s .

(54)
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Graphically,

p

QP energy

holes

free fermions

pf

Besides energies, all the quasi-particles have definite momenta, spins Sz, and charges,

P̂tot =

|p|>pf only
∑

p,s

p× â†p,sâp,s +

|p|<pf only
∑

p,s

p× b̂†p,sb̂p,s ,

Ŝz
tot =

|p|>pf only
∑

p,s

s× â†
p,sâp,s +

|p|<pf only
∑

p,s

s× b̂†
p,sb̂p,s ,

Q̂tot =

|p|>pf only
∑

p,s

(+q)× â†
p,sâp,s +

|p|<pf only
∑

p,s

(−q)× b̂†
p,sb̂p,s + QFS ,

(55)

where q depends on the fermion species and the type of charge in question — for the

electric charge in an electron gas q = −e while for the baryon number in a degenerate

neutron gas in a neuron star q = +1. In any case, the charge of a hole is always

exactly opposite to the charge of a free particle.
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