1. The EM vector potential $A_{\mu}(x)$ is subject to gauge transforms $A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \Lambda(x)$. In spacetimes of higher dimensions $D>4$ there are antisymmetric tensor fields subject to similar gauge transforms.

Let's start with the 2-index antisymmetric tensor field $B_{\mu \nu}(x) \equiv-B_{\nu \mu}(x)$, where μ and ν are D-dimensional Lorentz indices running from 0 to $D-1$. To be precise, $B_{\mu \nu}(x)$ is the tensor potential, analogous to the electromagnetic vector potential $A_{\mu}(x)$. The analog of the EM tension fields $F_{\mu \nu}(x)$ is the 3-index tension tensor

$$
\begin{equation*}
H_{\lambda \mu \nu}(x)=\frac{1}{2} \partial_{[\lambda} B_{\mu \nu]}=\partial_{\lambda} B_{\mu \nu}+\partial_{\mu} B_{\nu \lambda}+\partial_{\nu} B_{\lambda \mu} \tag{1}
\end{equation*}
$$

Note: this tensor is totally antisymmetric in all 3 indices.
(a) Show that regardless of the Lagrangian, the H fields satisfy Jacobi identities

$$
\begin{equation*}
\frac{1}{6} \partial_{[\kappa} H_{\lambda \mu \nu]} \equiv \partial_{\kappa} H_{\lambda \mu \nu}-\partial_{\lambda} H_{\mu \nu \kappa}+\partial_{\mu} H_{\nu \kappa \lambda}-\partial_{\nu} H_{\kappa \lambda \mu}=0 . \tag{2}
\end{equation*}
$$

(b) The Lagrangian for the $B_{\mu \nu}(x)$ fields is

$$
\begin{equation*}
\mathcal{L}(B, \partial B)=\frac{1}{12} H_{\lambda \mu \nu} H^{\lambda \mu \nu} \tag{3}
\end{equation*}
$$

where $H_{\lambda \mu \nu}$ are as in eq. (1). Treating the $B_{\mu \nu}(x)$ as $\frac{1}{2} D(D-1)$ independent fields, derive their equations of motion.

Similar to the EM fields, the $B_{\mu \nu}$ fields are subject to gauge transforms

$$
\begin{equation*}
B_{\mu \nu}^{\prime}(x)=B_{\mu \nu}(x)+\partial_{\mu} \Lambda_{\nu}(x)-\partial_{\nu} \Lambda_{\mu}(x) \tag{4}
\end{equation*}
$$

where $\Lambda_{\mu}(x)$ is an arbitrary vector field.
(c) Show that the tension fields $H_{\lambda \mu \nu}(x)$ - and hence the Lagrangian (3) - are invariant under such gauge transforms.

In spacetimes of sufficiently high dimensions D, one may have similar tensor fields with more indices. Generally, the potentials form a p-index totally antisymmetric tensor $C_{\mu_{1} \mu_{2} \cdots \mu_{p}}(x)$, the tensions form a $p+1$ index tensor

$$
\begin{equation*}
G_{\mu_{1} \mu_{2} \cdots \mu_{p+1}}(x)=\frac{1}{p!} \partial_{\left[\mu_{1}\right.} C_{\left.\mu_{2} \cdots \mu_{p} \mu_{p+1}\right]}(x), \tag{5}
\end{equation*}
$$

also totally antisymmetric in all its indices, and the Lagrangian is

$$
\begin{equation*}
\mathcal{L}(C, \partial C)=\frac{(-1)^{p}}{2(p+1)!} G_{\mu_{1} \mu_{2} \cdots \mu_{p+1}} G^{\mu_{1} \mu_{2} \cdots \mu_{p+1}} \tag{6}
\end{equation*}
$$

(d) Derive the Jacobi identities and the equations of motion for the G fields.
(e) Show that the tension fields $G_{\mu_{1} \mu_{2} \cdots \mu_{p+1}}(x)$ - and hence the Lagrangian (6) - are invariant under gauge transforms of the potentials $C_{\mu_{1} \mu_{2} \cdots \mu_{p}}(x)$ which act as

$$
\begin{equation*}
C_{\mu_{1} \mu_{2} \cdots \mu_{p}}^{\prime}(x)=C_{\mu_{1} \mu_{2} \cdots \mu_{p}}(x)+\frac{1}{(p-1)!} \partial_{\left[\mu_{1}\right.} \Lambda_{\left.\mu_{2} \cdots \mu_{p}\right]}(x) \tag{7}
\end{equation*}
$$

where $\Lambda_{\mu_{2} \cdots \mu_{p}}(x)$ is an arbitrary $(p-1)$-index tensor field (totally antisymmetric).
2. Next, consider the massive relativistic vector field $A^{\mu}(x)$ with Lagrangian density

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}-A^{\mu} J_{\mu} \tag{8}
\end{equation*}
$$

where $c=\hbar=1, F_{\mu \nu} \stackrel{\text { def }}{=} \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, and the current $J^{\mu}(x)$ is a fixed source for the $A^{\mu}(x)$ field. Note that because of the mass term, the Lagrangian (8) is not gauge invariant.
(a) Derive the Euler-Lagrange field equations for the massive vector field $A^{\mu}(x)$.
(b) Show that this field equation does not require current conservation; however, if the current happens to satisfy $\partial_{\mu} J^{\mu}=0$, then the field $A^{\mu}(x)$ satisfies

$$
\begin{equation*}
\partial_{\mu} A^{\mu}=0 \quad \text { and } \quad\left(\partial^{2}+m^{2}\right) A^{\mu}=J^{\mu} \tag{9}
\end{equation*}
$$

3. Finally, let's develop the Hamiltonian formalism for the massive vector field.
(a) Our first step is to identify the canonically conjugate "momentum" fields. Show that $\partial \mathcal{L} / \partial \dot{\mathbf{A}}=-\mathbf{E}$ but $\partial \mathcal{L} / \partial \dot{A}_{0} \equiv 0$.

In other words, the canonically conjugate field to $\mathbf{A}(\mathbf{x})$ is $-\mathbf{E}(\mathbf{x})$ but the $A_{0}(\mathbf{x})$ does not have a canonical conjugate! Consequently,

$$
\begin{equation*}
H=\int d^{3} \mathbf{x}(-\dot{\mathbf{A}}(\mathbf{x}) \cdot \mathbf{E}(\mathbf{x})-\mathcal{L}) \tag{10}
\end{equation*}
$$

(b) Show that in terms of the \mathbf{A}, \mathbf{E}, and A_{0} fields, and their space derivatives,

$$
\begin{equation*}
H=\int d^{3} \mathbf{x}\left(\frac{1}{2} \mathbf{E}^{2}+A_{0}\left(J_{0}-\nabla \cdot \mathbf{E}\right)-\frac{1}{2} m^{2} A_{0}^{2}+\frac{1}{2}(\nabla \times \mathbf{A})^{2}+\frac{1}{2} m^{2} \mathbf{A}^{2}-\mathbf{J} \cdot \mathbf{A}\right) \tag{11}
\end{equation*}
$$

Because the A_{0} field does not have a canonical conjugate, the Hamiltonian formalism does not produce an equation for the time-dependence of this field. Instead, it gives us a time-independent equation relating the $A_{0}(\mathbf{x}, t)$ to the values of other fields at the same time t :

$$
\begin{equation*}
\left.\frac{\delta H}{\delta A_{0}(\mathbf{x})} \equiv \frac{\partial \mathcal{H}}{\partial A_{0}}\right|_{\mathbf{x}}-\left.\nabla \cdot \frac{\partial \mathcal{H}}{\partial\left(\nabla A_{0}\right)}\right|_{\mathbf{x}}=0 \tag{12}
\end{equation*}
$$

For the remaining fields \mathbf{A} and \mathbf{E} there are Hamiltonian equations of motion for their time derivatives, namely

$$
\begin{align*}
\frac{\partial}{\partial t} \mathbf{A}(\mathbf{x}, t) & =-\left.\frac{\delta H}{\delta \mathbf{E}(\mathbf{x})}\right|_{t} \equiv-\left[\frac{\partial \mathcal{H}}{\partial \mathbf{E}}-\nabla_{i} \frac{\partial \mathcal{H}}{\partial\left(\nabla_{i} \mathbf{E}\right)}\right]_{(\mathbf{x}, t)} \tag{13}\\
\frac{\partial}{\partial t} \mathbf{E}(\mathbf{x}, t) & =+\left.\frac{\delta H}{\delta \mathbf{A}(\mathbf{x})}\right|_{t} \equiv+\left[\frac{\partial \mathcal{H}}{\partial \mathbf{A}}-\nabla_{i} \frac{\partial \mathcal{H}}{\partial\left(\nabla_{i} \mathbf{A}\right)}\right]_{(\mathbf{x}, t)}
\end{align*}
$$

(c) Write down the explicit form of all these equations.
(d) Verify that the equations you have just written down are equivalent to the relativistic Euler-Lagrange equations for the $A^{\mu}(x)$ you have obtained in problem 2.a.

