
PHY–396 K. Problem set #1. Due September 15, 2008.

1. The EM vector potential Aµ(x) is subject to gauge transforms Aµ(x)→ Aµ(x) + ∂µΛ(x).

In spacetimes of higher dimensions D > 4 there are antisymmetric tensor fields subject

to similar gauge transforms.

Let’s start with the 2-index antisymmetric tensor field Bµν(x) ≡ −Bνµ(x), where µ and ν

are D-dimensional Lorentz indices running from 0 to D− 1. To be precise, Bµν(x) is the

tensor potential, analogous to the electromagnetic vector potential Aµ(x). The analog of

the EM tension fields Fµν(x) is the 3–index tension tensor

Hλµν(x) = 1
2∂[λBµν] = ∂λBµν + ∂µBνλ + ∂νBλµ . (1)

Note: this tensor is totally antisymmetric in all 3 indices.

(a) Show that regardless of the Lagrangian, the H fields satisfy Jacobi identities

1
6∂[κHλµν] ≡ ∂κHλµν − ∂λHµνκ + ∂µHνκλ − ∂νHκλµ = 0. (2)

(b) The Lagrangian for the Bµν(x) fields is

L(B, ∂B) = 1
12HλµνH

λµν (3)

where Hλµν are as in eq. (1). Treating the Bµν(x) as 1
2D(D − 1) independent fields,

derive their equations of motion.

Similar to the EM fields, the Bµν fields are subject to gauge transforms

B′µν(x) = Bµν(x) + ∂µΛν(x) − ∂νΛµ(x) (4)

where Λµ(x) is an arbitrary vector field.

(c) Show that the tension fields Hλµν(x) — and hence the Lagrangian (3) — are invariant

under such gauge transforms.
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In spacetimes of sufficiently high dimensions D, one may have similar tensor fields with

more indices. Generally, the potentials form a p-index totally antisymmetric tensor

Cµ1µ2···µp(x), the tensions form a p+ 1 index tensor

Gµ1µ2···µp+1(x) =
1

p!
∂[µ1

Cµ2···µpµp+1](x), (5)

also totally antisymmetric in all its indices, and the Lagrangian is

L(C, ∂C) =
(−1)p

2(p+ 1)!
Gµ1µ2···µp+1G

µ1µ2···µp+1 . (6)

(d) Derive the Jacobi identities and the equations of motion for the G fields.

(e) Show that the tension fields Gµ1µ2···µp+1(x) — and hence the Lagrangian (6) — are

invariant under gauge transforms of the potentials Cµ1µ2···µp(x) which act as

C ′µ1µ2···µp
(x) = Cµ1µ2···µp(x) +

1

(p− 1)!
∂[µ1

Λµ2···µp](x) (7)

where Λµ2···µp(x) is an arbitrary (p− 1)-index tensor field (totally antisymmetric).

2. Next, consider the massive relativistic vector field Aµ(x) with Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (8)

where c = h̄ = 1, Fµν
def
= ∂µAν − ∂νAµ, and the current Jµ(x) is a fixed source for

the Aµ(x) field. Note that because of the mass term, the Lagrangian (8) is not gauge

invariant.

(a) Derive the Euler–Lagrange field equations for the massive vector field Aµ(x).

(b) Show that this field equation does not require current conservation; however, if the

current happens to satisfy ∂µJ
µ = 0, then the field Aµ(x) satisfies

∂µA
µ = 0 and (∂2 +m2)Aµ = Jµ. (9)
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3. Finally, let’s develop the Hamiltonian formalism for the massive vector field.

(a) Our first step is to identify the canonically conjugate “momentum” fields. Show that

∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

In other words, the canonically conjugate field to A(x) is −E(x) but the A0(x) does not

have a canonical conjugate! Consequently,

H =

∫
d3x

(
−Ȧ(x) · E(x) − L

)
. (10)

(b) Show that in terms of the A, E, and A0 fields, and their space derivatives,

H =

∫
d3x

(
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
)
.

(11)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism

does not produce an equation for the time-dependence of this field. Instead, it gives us a

time-independent equation relating the A0(x, t) to the values of other fields at the same

time t:

δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂(∇A0)

∣∣∣∣
x

= 0. (12)

For the remaining fields A and E there are Hamiltonian equations of motion for their

time derivatives, namely

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

≡ −
[
∂H
∂E
− ∇i

∂H
∂(∇iE)

]
(x,t)

,

∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

≡ +

[
∂H
∂A
− ∇i

∂H
∂(∇iA)

]
(x,t)

.

(13)

(c) Write down the explicit form of all these equations.

(d) Verify that the equations you have just written down are equivalent to the relativistic

Euler–Lagrange equations for the Aµ(x) you have obtained in problem 2.a.
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