PHY-396 K. Problem set #1. Due September 15, 2008.

. The EM vector potential A,(z) is subject to gauge transforms A, (z) — A, (z) + 0,A(z).
In spacetimes of higher dimensions D > 4 there are antisymmetric tensor fields subject

to similar gauge transforms.

Let’s start with the 2-index antisymmetric tensor field By, () = —B,,(x), where p and v
are D-dimensional Lorentz indices running from 0 to D — 1. To be precise, By, () is the
tensor potential, analogous to the electromagnetic vector potential A, (z). The analog of

the EM tension fields F},, () is the 3-index tension tensor
H)\/w(l') = %a[)\Bw/] = a/\B/u/ + a,uBl//\ + al/B)\u- (1)

Note: this tensor is totally antisymmetric in all 3 indices.

(a) Show that regardless of the Lagrangian, the H fields satisfy Jacobi identities

%a[mHAuu} = aliH)\,u,l/ - a)\H/U/Ii + aqum)\ - al/H//i)\/A = 0. (2)

(b) The Lagrangian for the B, (x) fields is
L(B,0B) = L Hyu, HM™ (3)

where H),, are as in eq. (1). Treating the B, (z) as $D(D — 1) independent fields,

derive their equations of motion.

Similar to the EM fields, the B, fields are subject to gauge transforms
B;W(x) = Bu(z) + 0\ (z) — OAu(x) (4)

where A, (x) is an arbitrary vector field.

(c) Show that the tension fields H},,, (z) — and hence the Lagrangian (3) — are invariant

under such gauge transforms.



In spacetimes of sufficiently high dimensions D, one may have similar tensor fields with
more indices. Generally, the potentials form a p-index totally antisymmetric tensor

Churpin-p, (), the tensions form a p + 1 index tensor
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also totally antisymmetric in all its indices, and the Lagrangian is
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(d) Derive the Jacobi identities and the equations of motion for the G fields.

(e) Show that the tension fields G, ,-..ps,,, (#) — and hence the Lagrangian (6) — are

invariant under gauge transforms of the potentials Cy, 4,....s, (¥) Which act as
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where A,..., (2) is an arbitrary (p — 1)-index tensor field (totally antisymmetric).

. Next, consider the massive relativistic vector field A*(x) with Lagrangian density

L = —2F,F"™ + tm* A AP — AP, (8)
where ¢ = b = 1, F), def 0uA, — 0,A,, and the current J#(x) is a fixed source for
the A#(x) field. Note that because of the mass term, the Lagrangian (8) is not gauge

invariant.
(a) Derive the Euler—Lagrange field equations for the massive vector field A*(z).

(b) Show that this field equation does not require current conservation; however, if the

current happens to satisfy 9, J* = 0, then the field A#(x) satisfies

OA* =0 and  (0*+mPH)Ar = JH (9)



3. Finally, let’s develop the Hamiltonian formalism for the massive vector field.

(a) Our first step is to identify the canonically conjugate “momentum” fields. Show that

dL/OA = —E but dL/9Ay = 0.

In other words, the canonically conjugate field to A(x) is —E(x) but the Ag(x) does not

have a canonical conjugate! Consequently,
H = /d3x (—A<x) E(x) — c) . (10)
(b) Show that in terms of the A, E, and Ag fields, and their space derivatives,

H = [d*x (3B + Ag(Jo— V-B) = tm?43 + J(Vx A)" + Im?A% — J-A).
(11)

Because the Ag field does not have a canonical conjugate, the Hamiltonian formalism
does not produce an equation for the time-dependence of this field. Instead, it gives us a

time-independent equation relating the Ag(x,t) to the values of other fields at the same

time t:
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For the remaining fields A and E there are Hamiltonian equations of motion for their

time derivatives, namely
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(c) Write down the explicit form of all these equations.

(d) Verify that the equations you have just written down are equivalent to the relativistic

Euler-Lagrange equations for the A#(x) you have obtained in problem 2.a.



