
PHY–396 K. Problem set #2. Due September 22, 2011.

1. In class I have introduced the (free) quantum scalar field ϕ̂(x, t), its canonically conjugate

quantum field π̂(x, t), their equal-time commutation relations

[
ϕ̂(x, t), ϕ̂(x′, same t)

]
= 0,[

π̂(x, t), π̂(x′, same t)
]

= 0,[
ϕ̂(x, t), π̂(x′, same t)

]
= iδ(3)(x− x′),

(1)

and the Hamiltonian

Ĥ =

∫
d3x

(
1
2 π̂

2(x) + 1
2

(
∇ϕ̂(x)

)2
+ 1

2m
2 ϕ̂2(x)

)
. (2)

I showed that [ϕ̂(x, t), Ĥ] = iπ̂(x, t) and hence in the Heisenberg picture

∂

∂t
ϕ̂(x, t) = π̂(x, t). (3)

Your task is to show that

[π̂(x, t), Ĥ] = i
(
∇2 −m2

)
ϕ̂(x, t) (4)

and hence in the Heisenberg picture ϕ̂(x, t) satisfies the Klein–Gordon equation

(
∂2

∂t2
− ∇2 + m2

)
ϕ̂(x, t) = 0. (5)
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2. Now let’s quantize the massive vector field introduced in the previous homework (set#1,

problems 2–3). In the classical Hamiltonian formalism, the space components Aj(x) have

canonical conjugates −Ej(x), hence in the quantum theory, the quantum fields Âj(x, t)

and Êk(x, t) satisfy equal-time commutation relations[
Âj(x, t), Âk(x′, same t)

]
= 0,[

Êj(x, t), Êk(x′, same t)
]

= 0,[
Âj(x, t), Êk(x′, same t)

]
= −iδjkδ(3)(x− x′).

(6)

The classical time component A0(x) does not have a canonical conjugate and hence

no Hamilton equation for its time dependence. Instead, the A0(x) satisfies a time-

independent constraint m2A0 = J0 − ∇ · ~E; in the quantum theory, this constraint is

implemented as an operatorial identity

m2Â0(x, t) ≡ Ĵ0(x, t) − ∇ · Ê(x, t) (7)

in the combined Hilbert space of the massive vector bosons and the charged particles

giving rise to the Ĵ0(x, t) and Ĵ(x, t) operators. At equal times, the current operators Ĵ0

and Ĵ commute with the vector fields Â and Ê, while the commutation relations of the

Â0 with the vector fields follow from eq. (7).

(a) Spell out the equal-times commutation relations of the Â0(x, t) field with the vector

fields Â(x′, same t) and Ê(x′, same t).

The Hamiltonian operator for the quantum vector fields follows from the classical Hamil-

tonian (eq. (11) from the previous homework):

Ĥ =

∫
d3x

(
1
2Ê

2 + Â0

(
Ĵ0 −∇ · Ê

)
− 1

2m
2Â2

0 + 1
2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

)
.

(8)

Note that in the Heisenberg picture, all the quantum fields on the right hand side depend

on time as well as x, but the net Hamiltonian is time independent.

(b) Calculate the commutators of the vector fields Â(x, t) and Ê(x, t) with the Hamil-

tonian (8), write down the Heisenberg equations for the quantum vector fields, and

compare them to their classical counterparts from the previous homework.
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3. An operator acting on identical bosons can be described in terms of N–particle wave

functions (the first-quantized formalism) or in terms of creation and annihilation operators

in the Fock space (the second-quantized formalism). This problem is about converting

the operators from one formalism to another.

The key to this conversion are the single-particle wave functions φα(x) of states |α〉 and

the symmetrized N -particle wave functions

φαβ···ω(x1,x2 . . . ,xN ) =
1√
D

distinct permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

=
1

T
√
D

all permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

(9)

of N -boson states |α, β, . . . , ω〉. In eqs. (9), D is the number of distinct (i.e., non-trivial)

permutations of single-particle states (α, β, . . . , ω) and T is the number of trivial permu-

tations. In terms of the occupation numbers nγ

T =
∏
γ

nγ ! , D =
N !

T
. (10)

(a) Consider a generic N -particle quantum state |N ;ψ)〉 with a totally symmetric wave-

function ψ(x1, . . . ,xN ). Show that the (N+1)–particle state |N + 1;ψ′〉 = â†α |N ;ψ〉
has wave function

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1∑
i=1

φα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1). (11)

Hint: First prove this for wave-functions of the form (9). Then use the fact that

states |α1, . . . , αN 〉 form a complete basis of the N -boson Hilbert space.

(b) Show that the (N − 1)–particle state |N − 1;ψ′′〉 = âα |N ;ψ〉 has wave-function

ψ′′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
α(xN )× ψ(x1, . . . ,xN−1,xN ). (12)

Hint: the operator âα is the hermitian conjugate of â†α, hence for any state |N − 1; ψ̃〉,
〈N − 1; ψ̃| âα |N ;ψ〉 = 〈N ;ψ| â†α |N − 1; ψ̃〉∗.
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Now consider the one-body operators, i.e. additive operators acting on one particle at a

time. In the first-quantized formalism they act on N–particle states according to

Â
(1)
net =

N∑
i=1

Â1(i
th particle) (13)

where Â1 is some kind of a one-particle operator (such as momentum p̂, or kinetic energy

1
2m p̂2, or potential V (x̂), etc., etc.). In the second-quantized formalism such operators

become

Â
(2)
net =

∑
α,β

〈α| Â1 |β〉 â†αâβ . (14)

(c) Verify that the two operators have the same matrix elements between any two N -

boson states |N ;ψ〉 and |N ; ψ̃〉, 〈N ; ψ̃| Â(1)
net |N ;ψ〉 = 〈N ; ψ̃| Â(2)

net |N ;ψ〉.
Hint: use Â1 =

∑
α,β |α〉 〈α| Â1 |β〉 〈β|.

Finally, consider two-body operators, i.e. additive operators acting on two particles at a

time. Given a two-particle operator B̂2 — such as V (x̂1− x̂2) — the net B operator acts

in the first-quantized formalism according to

B̂
(1)
net = 1

2

∑
i6=j

B̂2(i
th and jth particles), (15)

and in the second-quantized formalism according to

B̂
(2)
net = 1

2

∑
α,β,γ,δ

(〈α| ⊗ 〈β|)B̂2(|γ〉 ⊗ |δ〉) â†αâ
†
β âγ âδ . (16)

(d) Again, show these two operators have the same matrix elements between any two

N -boson states, 〈N ; ψ̃| Â(1)
net |N ;ψ〉 = 〈N ; ψ̃| Â(2)

net |N ;ψ〉 for any 〈N ; ψ̃| and |N ;ψ〉.
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4. Finally, an exercise in bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (17)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ] and [â†αâβ, â

†
γ âδ].

(b) Consider three one-particle operators Â1, B̂1, and Ĉ1. Let us define the corresponding

second-quantized operators Â
(2)
net, B̂

(2)
net, and Ĉ

(2)
net according to eq. (14).

Show that if Ĉ1 = [Â1, B̂1] then Ĉ
(2)
net =

[
Â
(2)
net, B̂

(2)
net

]
.

(c) Next, calculate the commutator [â†αâ
†
β âγ âδ, â

†
µâν ].

(d) Now let Â1 be a one-particle operator, let B̂2 and Ĉ2 be two-body operators, and let

Â
(2)
net, B̂

(2)
net, and Ĉ

(2)
net be the corresponding second-quantized operators according to

eqs. (14) and (16).

Show that if Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
then Ĉ

(2)
net =

[
Â
(2)
net, B̂

(2)
net

]
.

(e) Finally, show that for any analytic function f(â†) of the creation operators or for any

function g(â) of the annihilation operators,

[âα, f(â†)] =
∂f(â†)

∂â†α
, [â†α, g(â)] = −∂g(â)

∂âα
,

exp
(∑

α
cαâα

)
f(â†) exp

(
−
∑

α
cαâα

)
= f(each â†α → â†α + cα),

exp
(∑

α
cαâ
†
α

)
g(â) exp

(
−
∑

α
cαâ
†
α

)
= g(each âα → âα − cα).

(18)

Hint: two of these four equations are hermitian conjugates of the other two.
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