
PHY–396 K. Problem set #3. Due September 29, 2011.

1. Quantum mechanics of a fixed number of relativistic particles may be a useful approxima-

tion for some systems, but it’s inconsistent as a complete theory. Among other problems, it

allows superluminal propagation of particles, which is inconsistent with relativistic causal-

ity. Indeed, consider a single free relativistic spinless particle with Hamiltonian

Ĥ = +

√
M2 + P̂2 (1)

(in the c = h̄ = 1 units). In the coordinate picture, this Hamiltonian is a horrible integro-

differential operator, but that’s only a technical problem. The real problem concerns the

time evolution kernel

U(x− y; t) = 〈x, t|y, t0 = 0〉Heisenberg
picture = 〈x| exp(−itĤ) |y〉Schroedingerpicture . (2)

(a) Show that

U(x−y; t) =

∫
d3k

(2π)3
exp
(
i(x−y)k−itω(k)

)
=
−i

4π2 r

+∞∫
−∞

dk k exp
(
irk−itω(k)

)
, (3)

where r = |x− y| and ω(k) = +
√
M2 + k2.

(b) Take the limit t → ∞, r → ∞, with fixed ratio r/t; let’s stay inside the future light

cone, so (r/t) < 1. Show that in this limit, the evolution kernel becomes

U(x− y; t) ≈ (−iM)3/2

4π3/2
t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (4)

Hint: Use the saddle point method to evaluate the integral (3). If you are not familiar

with this method — or any other method for approximating integrals of the form∫
dk f(x)× exp

(
Ag(x)

)
in the limit A→∞— then read my notes on the saddle-point

method. (I wrote those notes for a QM class, hence the Airy function example. For

this problem, you don’t need that example, just the general method.)
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(c) Finally, take a similar limit but go outside the light cone, thus fixed (r/t) > 1 while

r, t→∞. Show that in this limit, the kernel becomes

U(x− y; t) ≈ iM3/2

4π3/2
t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (5)

This formula shows that the kernel diminishes exponentially outside the light cone, but

it does not vanish! Thus, given a particle localized at point y at the time t0 = 0, after

time t > 0, its wave function is mostly limited to the future light cone r < t, but there is

an exponential tail outside the light cone. In other words, the probability of superluminal

motion is exponentially small but non-zero.

Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’

light cones can either create a particle at x and then annihilate it at y, or else annihilate it

at y and then create it at x. I will show in class that the two effects precisely cancel each

other, so altogether there is no propagation outside the light cone. That’s how relativistic

QFT is perfectly causal while the relativistic QM is not.

2. Similar to the scalar field I have discussed in class, any free relativistic field Ψ̂ℵ(x) —

where ℵ stands for a vector, tensor, or spinor index or milti-index — can be expanded into

creation and annihilation operators:

Ψ̂ℵ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxUℵ(k, λ) âk,λ + e+ikxVℵ(k, λ) â†k,λ

)k0=+ωk

(6)

for a real (hermitian) quantum field, or

Ψ̂ℵ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxUℵ(k, λ) âk,λ + e+ikxVℵ(k, λ) b̂†k,λ

)k0=+ωk

,

Ψ̂†ℵ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxV ∗ℵ (k, λ) b̂k,λ + e+ikxU∗ℵ(k, λ) â†k,λ

)k0=+ωk

(7)
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for a complex field and its hermitian conjugate. In all cases, kx ≡ kµx
µ = ωkt − k · x for

ωk = +
√
k2 +m2,

e−ikx × Uℵ(k, λ) and e+ikx × Vℵ(k, λ) (8)

are plane-wave solutions of the classical field equations; the polarizations — i.e., indepen-

dent solutions for the same kµ — are labeled by λ.

In particular, a free massive vector field Aµ(x) satisfies (∂2 + m2)Aµ = 0 and ∂µA
µ = 0

(see homework set#1, problem 2), hence the plane-wave solutions have form

Aµ(x) = e−ikx×Eµk,λ or Aµ(x) = e+ikx×Eµ∗k,λ for kµ = (+ωk,k) and kµEµk,λ = 0.

(9)

For each k there are 3 independent choices of Eµ vectors, hence 3 polarizations λ = 1, 2, 3

(or λ = −1, 0,+1 in the helicity basis). For k = 0 the Eµ0,λ are 3 purely-space vectors of

unit length and ⊥ to each other; for other k, we Lorentz-boost these 3 vectors into the

moving particle’s frame.

(a) Show that such boost gives not only kµEµk,λ = 0 for all 3 polarizations but also

gµνEµk,λE
ν∗
k,λ′ = −δλ,λ′ and

∑
λ

Eµk,λE
ν∗
k,λ = −gµν +

kµkν

m2
. (10)

Note: the Eµk,λ could be real or complex, dependent on a polarization (e.g., planar or

circular), so it’s important to distinguish between the Eµk,λ and the Eµ∗k,λ.

Applying the general rule (6) to the free massive real vector fields gives

Âµ(x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxEµk,λ âk,λ + e+ikxEµ∗k,λ â

†
k,λ

)k0=+ωk

. (11)

(b) Show that

F̂µν(x) = ∂[µAν](x) =

∫
d3k

(2π)3
1

2ωk

∑
λ

(
e−ikxEµνk,λ âk,λ + e+ikxEµν∗k,λ â

†
k,λ

)k0=+ωk

(12)

where Eµνk,λ = −ikµEνk,λ + ikνEµk,λ.
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(c) Specialize eqs. (11) and (12) to the Â0(x) and Ê(x) and show that they are consistent

with the operatorial identity m2Â0 +∇ · Ê ≡ 0 for the free massive vector field. (cf.

eq. (7) from the last homework).

The creation / annihilation operators â†k,λ and âk,λ satisfy the (relativistically normalized)

bosonic commutation relations

[
âk,λ, âk′,λ′

]
= 0,

[
â†k,λ, â

†
k′,λ′

]
= 0,

[
âk,λ, â

†
k′,λ′

]
= δλλ′×2ωk(2π)3δ(3)(k−k′).

(13)

(d) Show that these relations lead to the same equal-time commutation relations for the

vector fields Â and Ê as we had in eq. (6) of the last homework.

The rest of this problem is about the Hamiltonian of the free massive vector fields and its

expansion into products of creation and annihilation operators.

(e) First, take Ĥ from eq. (8) of the last homework and show that in the absence of the

current Ĵµ(x)

Ĥ =

∫
d3x

(
1
4 δαµδβνF̂

αβF̂µν + 1
2m

2 δαµÂ
αÂµ

)
(14)

Note: the δαµ and δβν here are not typos for gαµ and gβν ; the integrand here is not

Lorentz invariant.

(f) Before expanding the quantum fields in eq. (14) into creation and annihilation opera-

tors, show that the polarization vectors satisfy

1
4 δαµδβνE

αβ
k,λE

µν∗
k,λ′ + 1

2m
2 δαµEαk,λE

µ∗
k,λ′ = ω2

k × δλ,λ′ ,

1
4 δαµδβνE

αβ
k,λE

µν
−k,λ′ + 1

2m
2 δαµEαk,λE

µ
−k,λ′ = 0.

(15)

Hint: use kµEµk,λ = 0 and eqs. (10). Note that δαµk
αEµk,λ is different from kµEµk,λ and

that the 3-momentum k′ = −k comes with energy k′0 = +k0 = +ωk.

(g) Now expand the Âµ(x) and F̂µν fields in eq. (14) into creation and annihilation op-

erators according to eqs. (11) and (12), integrate over x, use eqs. (15) to simplify the
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sums over polarizations, all to show that

Ĥ =

∫
d3k

(2π)3
1

2ωk

∑
λ

ωkâ
†
k,λâk,λ + const. (16)

The constant term here is an infinite c-number which results from commuting â†k,λ

through âk,λ for the same k and λ. Despite this infinity, this term commutes with all

the quantum fields so it plays no role in their dynamics. Usually, this term is ignored

or defined away (by redefining Ĥ in terms of normal-ordered products of the quantum

fields), and that’s what we are going to do in this homework.

(h) Finally, verify that the time-dependence of the quantum fields (11) and (12) agrees

with the Heisenberg equations for the Hamiltonian (16),

i∂0Â
µ(x) =

[
Âµ(x), Ĥ

]
, i∂0F̂

µν(x) =
[
F̂µν(x), Ĥ

]
. (17)

3. The last problem is about the Feynman propagator of the massive vector field.

(a) Calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(18)

(b) And now, the Feynman propagator: Show that

GµνF ≡ 〈0|T∗Âµ(x)Âν(y) |0〉 =

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y)

=

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
ie−ik(x−y)

k2 −m2 + i0

(19)

where

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y), (20)

is the modified time-ordered product of the vector fields. The purpose of this modifi-
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cation
?

is to absorb the δ(4)(x− y) stemming from the ∂0∂0GF (x− y).

Finally, the classical action for the free massive vector field may be written in the form

S = 1
2

∫
d4xAµ(x)DµνAν(x) where Dµν = gµν(∂2 +m2) − ∂µ∂ν . (21)

(c) Verify this formula and show that the Feynman propagator (19) is a Green’s function

of the same Dµν differential operator as in eq. (21), namely

Dµν [acting on x]GνλF (x− y) = +iδλµδ
(4)(x− y). (22)

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
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