
PHY–396 K. Problem set #4. Due October 6, 2011.

1. First, finish the last homework — do problem 3 about the Feynman propagator for the

massive vector field. Note: you will need some formulae from problem 2 (especially

eqs. (10) and (11)) and also formulae for the scalar propagator I have derived in class.

2. Next, a reading assignment: chapter 3 of Modern Quantum Mechanics by J. J. Sakurai,

sections 1, 2, 3, second half of section 5 (representations of the rotation operators), and

section 10. The other sections 4, 6, 7, 8, and 9 are not relevant to the present class

material. The main focus of this assignment are the relations between the rotations and

the angular momenta Ĵx,y,z.

PS: If you have read the Sakurai’s book before but it has been a while, please read it

again.

3. The rest of this homework is about the Lorentz group and its representations.

The continuous Lorentz group SO+(3, 1) has 6 generators Ĵµν = −Ĵνµ satisfying[
Ĵαβ, Ĵµν

]
= igβµĴαν − igαµĴβν − igβν Ĵαµ + igαν Ĵβµ. (1)

In 3D terms, the generators comprise three angular momenta Ĵ i = 1
2ε
ijkĴjk — which

generate the rotation of space — plus 3 generators K̂i = Ĵ0i = −Ĵ i0 of the Lorentz

boosts.

(a) Show that in 3D terms, the commutation relations (1) become[
Ĵ i, Ĵj

]
= iεijkĴk,

[
Ĵ i, K̂j

]
= iεijkK̂k,

[
K̂i, K̂j

]
= −iεijkĴk. (2)

Lorentz symmetry dictates commutation relations of Ĵµν with any operators comprising

a Lorentz multiplet. In particular, for any Lorentz vector V̂ µ[
V̂ λ, Ĵµν

]
= igλµV̂ ν − igλν V̂ µ. (3)

(b) Spell out these commutation relations in 3D terms, then use them to show that

the Lorentz boost generators K̂ do not commute with the Hamiltonian Ĥ of any

relativistic theory.
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Now consider the little group G(p) of Lorentz transforms preserving the momentum vector

pµ of some massive particle, pµp
µ = m2 > 0. For simplicity, assume the particle moves in

z direction with velocity β, thus pµ = (E, 0, 0, p) for E = γm and p = βγm.

(c) Show that there 3 independent combination of Ĵ i and K̂i preserving this momentum,

namely

J̃1 = γĴ1 − βγK̂2, J̃2 = γĴ2 + βγK̂1, and Ĵ3. (4)

(d) Show that these 3 combinations commute with each other similar to the ordinary

angular momenta.

For a massless particle with pµ = (E, 0, 0, E) the little group is generated by Ĵ3, Î1 =

Ĵ1 − K̂2, and Î2 = Ĵ2 + K̂1 which satisfy

[Ĵ3, Î1] = +iÎ2, [Ĵ3, Î2] = +iÎ1, [Î1, Î2] = 0. (5)

As discussed in class, the finite unitary multiplets of this group are singlets made of

helicity λ satisfying satisfying Ĵ3 |λ〉 = λ |λ〉 and Î1,2 |λ〉 = 0.

(e) Show that in 4D terms the state |p, λ〉 of a massless particle satisfies

εαβγδĴ
βγP̂ δ |p, λ〉 = −2λP̂α |p, λ〉 . (6)

Use this formula to show that continuous Lorentz transforms do not change helicities

of massless particles.

4. While particle states belong to infinite but unitary multiplets of the Lorentz group, the

quantum fields form finite but non-unitary multiplets. In this problem we shall classify all

such multiplets of the SO+(3, 1) group, or rather of its double cover Spin(3, 1) ∼= SL(2,C).

(a) Let’s re-organize the Ĵ and K̂ generators of the continuous Lorentz group into two

non-hermitian 3-vectors

Ĵ+ = 1
2

(
Ĵ + iK̂

)
and Ĵ− = 1

2

(
Ĵ − iK̂

)
= Ĵ†+. (7)

Show that the two 3-vectors commute with each other, [Ĵk+, Ĵ
`
−] = 0, while the compo-

nents of each 3-vector satisfy angular momentum commutation relations, [Ĵk+, Ĵ
`
+] =

iεk`mĴm+ and [Ĵk−, Ĵ
`
−] = iεk`mĴm− .
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By themselves, the 3 Ĵk+ generate a symmetry group similar to rotations of a 3D space,

but since the Ĵk+ are non-hermitian, the finite irreducible multiplets of this symmetry

are non-unitary analytic continuations (to complex “angles”) of the ordinary angular

momentum multuplets (j) of spin j = 0, 12 , 1,
3
2 , 2, . . .. Likewise, the finite irreducible

multiplets of the symmetry group generated by the Ĵk− are analytic continuations of the

spin-j multiplets of angular momentum. Moreover, the two symmetry groups commute

with each other, so the finite irreducible multiplets of the net Lorentz symmetry are

tensor products (j+) ⊗ (j−) of the Ĵ+ and Ĵ− multiplets. In other words, distinct finite

irreducible multiplets of the Lorentz symmetry may be labeled by two integer or half-

integer ‘spins’ j+ and j−, while the states within such a multiplet are |j+, j−,m+,m−〉
for m+ = −j+, . . . ,+j+ and m− = −j−, . . . ,+j−.

The simplest non-trivial Lorentz multiplet 2 has j+ = 1
2 while j− = 0. In this two-

component multiplet Ĵ+ = 1
2
σσ while Ĵ− = 0, or in terms of Ĵ and K̂, Ĵ = 1

2
σσ while

K̂ = − i
2
σσ. Consequently, the finite Lorentz transforms in this multiplet are represented

by 2× 2 matrices of the form

M = exp
(
−ia · Ĵ− ib · K̂

)
= exp

(
1
2(−ia + b) · σσ

)
. (8)

for some real 3-vectors a and b.
?

Note that such matrices always have unit determinant,

det(M) = 1, but there are no other general restrictions: a generic M is complex, non-

unitary, non-hermitian, etc., etc. The group of such 2 × 2 complex matrices is called

SL(2,C).

The Lorenz group has another in-equivalent two-component multiplet 2̄ with j+ = 0

and j− = 1
2 . In this multiplet Ĵ acts as 1

2
σσ but K̂ acts as + i

2
σσ, hence a finite Lorentz

transform with the same parameters a and b as in eq. (8) is represented by a different

2× 2 matrix

M = exp
(
1
2(−ia− b) · σσ

)
. (9)

Generally this matrix is in-equivalent to M but rather equivalent to the complex conjugate

? The a vector parametrizes a rotation of 3D space while the b vector parametrizes a Lorentz boost. A
general continuous Lorentz transform involves both.
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of M ,

M =
(
M †
)−1

= σ2M
∗σ2. (10)

(b) Prove this relation for any a and b. Hint: prove and use σ2σσ∗σ2 = −σσ.

For pure rotations of 3D space, M is unitary and M = M . For pure Lorentz boosts, M

is hermitian and M = M−1. We shall prove both statements later in this exercise.

Later in class we shall study in great detail the Dirac spinor fields that form a reducible

2 + 2̄ multiplet. There are also Weyl spinor fields that form irreducible 2 or 2̄ multiplets.

There will be future homeworks about those spinors, but for now let’s consider the other

Lorentz multiplets.

In the ordinary Spin(3) = SU(2) group, one can construct a multiplet of any spin j from

a symmetric tensor product of 2j doublets. This procedure gives us an object Φα1,...,α2j

with 2j spinor indices α1, . . . , α2j = 1, 2 that’s totally symmetric under permutation of

those indices and transforms under an SU(2) symmetry U as

Φα1,α2...,α2j
→ U β1

α1
U β2
α2
· · ·U β2j

α2j
Φβ1,β2...,β2j

. (11)

For integer j, such objects are equivalent to tensors of the SO(3); for example, for j = 2

Φαβ ≡ Φβα is equivalent to an SO(3) vector ~Φ.

In the Lorentz group Spin(3, 1) we have a similar situation — any multiplet can be

constructed by tensoring together a bunch of two-component spinors of the SL(2,C).

But unlike the SU(2), the SL(2,C) has two different spinors 2 6∼= 2̄ transforming under

different rules. Notationally, we shall distinguish them by different index types: the un-

dotted Greek indices belong to spinor that transform according to M ∈ SL(2,C) while

the dotted Greek indices belong to spinors that transform according to M∗ (which is

equivalent to M),

Φα → M β
α Φβ 6∼= Φγ̇ → M∗δ̇γ̇ Φ

δ̇
. (12)

Combining such spinors to make a multiplet with ‘spins’ j+ and j−, we make an object

Φα1,...,α(2j+)
;γ̇1,...,γ̇(2j−)

with 2j+ un-dotted indices and 2j− dotted indices. Φ... is totally
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symmetric under permutations of the un-dotted indices with each other or dotted indices

with each other, but there is no symmetry between indices of different types. Under an

SL(2,C) symmetry M , the un-dotted indices transform according to M while the dotted

indices transform according to the M∗, thus

Φα1,...,α(2j+)
;γ̇1,...,γ̇(2j−)

→ M β1
α1
· · ·M

β(2j+)

α(2j+)
×M∗Mδ̇1

γ̇1
· · ·M

∗Mδ̇(2j−)

γ̇
(2j−)

· · ·×Φ
β1,...,β(2j+)

;δ̇1,...,δ̇(2j−)

.

(13)

Of particular importance among such multi-spinors is the bi-spinor Vαγ̇ with j+ = j− = 1
2

— it is equivalent to the Lorentz vector V µ. The map between bi-spinors and Lorentz

vectors involves four hermitian 2× 2 matrices σµ, where σ0 is the unit matrix while σ1,

σ2 and σ3 are the Pauli matrices. In SL(2,C) terms, each σµ matrix has one dotted and

one un-dotted index, thus σµαγ̇ . Using the σµ, we may re-cast any Lorentz vector V µ as a

matrix

V µ → Vµσ
µ = V 0 − V · σσ (14)

an hence as a
(
1
2 ,

1
2

)
bi-spinor

Vαγ̇ =
(
Vµσ

µ
)
αγ̇

= V 0δαγ̇ − V · σσαγ̇ . (15)

Under an SL(2,C) symmetry, the bi-spinor transforms as

Vαγ̇ → V ′αγ̇ = M β
αM

∗δ̇
γ̇ V

βδ̇
, (16)

or in matrix form,

Vµσ
µ → V ′µσ

µ = M (Vµσ
µ)M †. (17)

Since the four matrices σµ form a complete basis of 2 × 2 matrices, eq. (17) defines a

linear transform V ′µ = L ν
µ Vν .

(c) Prove that for any SL(2,C) matrix M , the transform L ν
µ (M) defined by eq. (17) is

real (real V ′µ for real Vµ), Lorentzian (preserves V ′µV
′µ = VµV

µ) and orthochronous.

Hint: prove and use det(Vµσ
µ) = VµV

µ.
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? For extra challenge, show that this transform is proper, det(L) = +1.

(d) Verify that this SL(2,C) → SO+(3, 1) map respects the group law, L(M2M1) =

L(M2)L(M1).

(e) Verify explicitly that for a unitary M = exp
(
− i

2θ n·σσ
)
, L(M) is a rotation by angle θ

around axis n, while for an hermitian M = exp
(
1
2r n · σσ

)
, L(M) is a boost of rapidity

r (β = tanh r, γ = cosh r) in the direction n.

In general, any (j+, j−) multiplet of the SL(2,C) with integer net spin j++j− is equivalent

to some kind of a Lorentz tensor. (Here, we include the scalar and the vector among the

tensors.) For example, the (1, 1) multiplet is equivalent to a symmetric, traceless 2–index

tensor Tµν = T νµ, Tµµ = 0. For j+ 6= j− the representation is complex, but one can

make a real tensor by combining two multiplets with opposite j+ and j−, for example the

(1, 0) and (0, 1) multiplets are together equivalent to an antisymmetric 2–index tensor

Fµν = −F νµ.

(f) Verify the above examples.

Hint: For any angular momentum (j = 1
2)⊗ (j = 1

2) = (j = 1)⊕ (j = 0).
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