1. First, an exercise in Dirac matrices γ^{μ}. Please do not assume any specific form of these 4×4 matrices, just use the anti-commutation relations

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \tag{1}
\end{equation*}
$$

In class, I have defined the spin matrices

$$
\begin{equation*}
S^{\mu \nu}=-S^{\nu \mu} \stackrel{\text { def }}{=} \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{2}
\end{equation*}
$$

and showed that

$$
\begin{equation*}
\left[S^{\mu \nu}, \gamma^{\lambda}\right]=i g^{\nu \lambda} \gamma^{\mu}-i g^{\mu \lambda} \gamma^{\nu} . \tag{3}
\end{equation*}
$$

(a) Show that the spin matrices $S^{\mu \nu}$ have commutation relations of the Lorentz generators,

$$
\begin{equation*}
\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} S^{\kappa \nu}-i g^{\lambda \nu} S^{\kappa \mu}-i g^{\kappa \mu} S^{\lambda \nu}+i g^{\kappa \nu} S^{\lambda \mu} \tag{4}
\end{equation*}
$$

A continuous Lorentz transform obtains from integrating infinite sequences of infinitesimal transforms $X^{\prime \mu}=X^{\mu}+\epsilon \Theta_{\nu}^{\mu} X^{\nu}$ for antisymmetric $\Theta_{\mu \nu}=-\Theta_{\nu \mu}$ (when both indices are down or both up); the finite transform is $X^{\mu}=L_{\nu}^{\mu} X^{\nu}$ where

$$
\begin{equation*}
L=\exp (\Theta), \quad \text { i.e., } \quad L_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\Theta_{\nu}^{\mu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda}+\frac{1}{6} \Theta_{\kappa}^{\mu} \Theta_{\lambda}^{\kappa} \Theta_{\nu}^{\lambda}+\cdots . \tag{5}
\end{equation*}
$$

(b) Let L be a Lorentz transform of the form (5), and let $M_{D}(L)=\exp \left(-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}\right)$. Show that $M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \gamma^{\nu}$.
Hint: use Hadamard Lemma $e^{A} B e^{-A}=B+[A, B]+\frac{1}{2}[A,[A, B]]+\frac{1}{6}[A,[A,[A, B]]]+\cdots$. Next, a little more algebra:
(c) Calculate $\left\{\gamma^{\rho}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right\},\left[\gamma^{\rho}, \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$ and $\left[S^{\rho \sigma}, \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}\right]$.
(d) Show that $\gamma^{\alpha} \gamma_{\alpha}=4, \gamma^{\alpha} \gamma^{\nu} \gamma_{\alpha}=-2 \gamma^{\nu}, \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=4 g^{\mu \nu}$, and $\gamma^{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=$ $-2 \gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$.
Hint: use $\gamma^{\alpha} \gamma^{\nu}=2 g^{\nu \alpha}-\gamma^{\nu} \gamma^{\alpha}$ repeatedly.
2. Now consider the $\gamma^{5} \stackrel{\text { def }}{=} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ matrix.
(a) Show that γ^{5} anticommutes with each of the γ^{μ} matrices $-\gamma^{5} \gamma^{\mu}=-\gamma^{\mu} \gamma^{5}-$ and commutes with all the spin matrices $S^{\mu \nu}$.
(b) Show that γ^{5} is hermitian and that $\left(\gamma^{5}\right)^{2}=1$.
(c) Show that $\gamma^{5}=(i / 24) \epsilon_{\kappa \lambda \mu \nu} \gamma^{\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}$ and $\gamma^{[\kappa} \gamma^{\lambda} \gamma^{\mu} \gamma^{\nu]}=-24 i \epsilon^{\kappa \lambda \mu \nu} \gamma^{5}$.
(d) Show that $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=-6 i \epsilon^{\kappa \lambda \mu \nu} \gamma_{\kappa} \gamma^{5}$.
(e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: $1, \gamma^{\mu}, \frac{1}{2} \gamma^{[\mu} \gamma^{\nu]}, \gamma^{5} \gamma^{\mu}$, and γ^{5}.

* My conventions here are: $\epsilon^{0123}=-1, \epsilon_{0123}=+1, \gamma^{[\mu} \gamma^{\nu]}=\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}$, $\gamma^{[\lambda} \gamma^{\mu} \gamma^{\nu]}=\gamma^{\lambda} \gamma^{\mu} \gamma^{\nu}-\gamma^{\lambda} \gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu} \gamma^{\lambda}-\gamma^{\mu} \gamma^{\lambda} \gamma^{\nu}+\gamma^{\nu} \gamma^{\lambda} \gamma^{\mu}-\gamma^{\nu} \gamma^{\mu} \gamma^{\lambda}$, etc.

Now consider Dirac matrices in spacetime dimensions $d \neq 4$. Such matrices always satisfy the Clifford algebra (1), but their sizes depend on d.

Let $\Gamma=i^{n} \gamma^{0} \gamma^{1} \cdots \gamma^{d-1}$ be the generalization of the γ^{5} to d dimensions; the pre-factor $i^{n}= \pm i$ or ± 1 is chosen such that $\Gamma=\Gamma^{\dagger}$ and $\Gamma^{2}=+1$.
(f) For even d, Γ anticommutes with all the γ^{μ}. Prove this, and use this fact to show that there are 2^{d} independent products of the γ^{μ} matrices, and consequently the matrices should be $2^{d / 2} \times 2^{d / 2}$.
(g) For odd d, Γ commutes with all the Γ^{μ} — prove this. Consequently, one can set $\Gamma=+1$ or $\Gamma=-1$; the two choices lead to in-equivalent sets of the γ^{μ}.

Classify the independent products of the γ^{μ} for odd d and show that their net number is 2^{d-1}; consequently, the matrices should be $2^{(d-1) / 2} \times 2^{(d-1) / 2}$.
3. Let's go back to $d=3+1$. Since all the spin matrices $S^{\mu \nu}$ commute with the γ^{5}, all the $M_{D}(L)=\exp \left(-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}\right)$ matrices are block-diagonal in the eigenbasis of the γ^{5}. In the Weyl convention for the γ matrices,

$$
M_{D}(L)=\left(\begin{array}{cc}
M_{L}(L) & 0 \tag{6}\\
0 & M_{R}(L)
\end{array}\right)
$$

where all blocks are 2×2. This makes the Dirac spinor a reducible representation of the continuous Lorentz group $S O^{+}(3,1)$.

Write down the explicit $S^{\mu \nu}$ matrices in the Weyl convention, then use them to show that the $M_{L}(L)$ block in eq. (6) is precisely the $S L(2, \mathbf{C})$ matrix M from problem 4 of the last homework while the M_{R} block is the $\bar{M}=\left(M^{\dagger}\right)^{-1}=\sigma_{2} M^{*} \sigma_{2}$ matrix from the same problem. In particular, for a pure rotation through angle φ around axis \mathbf{n}

$$
\begin{equation*}
M_{L}=M_{R}=\exp \left(-\frac{i}{2} \varphi \mathbf{n} \cdot \boldsymbol{\sigma}\right) \tag{7}
\end{equation*}
$$

while for a pure boost of rapidity r in the direction $\mathbf{n}, M_{L}=\exp \left(-\frac{r}{2} \mathbf{n} \cdot \boldsymbol{\sigma}\right)$ but $M_{R}=$ $\exp \left(+\frac{r}{2} \mathbf{n} \cdot \boldsymbol{\sigma}\right)$; in terms of the boost's β and γ parameters,

$$
\begin{equation*}
M_{L}=\sqrt{\gamma} \times \sqrt{1-\beta \mathbf{n} \cdot \boldsymbol{\sigma}}, \quad M_{R}=\sqrt{\gamma} \times \sqrt{1+\beta \mathbf{n} \cdot \boldsymbol{\sigma}} . \tag{8}
\end{equation*}
$$

4. Finally, consider the plane-wave solutions $e^{-i p x} u(p, s)$ and $e^{+i p x} v(p, x)$ of the Dirac equation. The 4 -component spinors $u(p, s)$ and $v(p, s)$ satisfy

$$
\begin{equation*}
(\not p-m) u(p, s)=0, \quad(\not p+m) v(p, s)=0, \quad u^{\dagger}(p, s) u\left(p, s^{\prime}\right)=v^{\dagger}(p, s) v\left(p, s^{\prime}\right)=2 E \delta_{s, s^{\prime}} . \tag{9}
\end{equation*}
$$

Let's writing down explicit formulae for these spinors in the Weyl basis for the γ^{μ} matrices.
(a) Show that for $\mathbf{p}=0$,

$$
\begin{equation*}
u(\mathbf{p}=\mathbf{0}, s)=\binom{\sqrt{m} \xi_{s}}{\sqrt{m} \xi_{s}} \tag{10}
\end{equation*}
$$

where ξ_{s} is a two-component $S O(3)$ spinor encoding the electron's spin state. The ξ_{s} are normalized to $\xi_{s}^{\dagger} \xi_{s^{\prime}}=\delta_{s, s^{\prime}}$.
(b) For other momenta, $u(p, s)=M$ (boost) $u(\mathbf{p}=0, s)$ for the boost that turns ($m, \overrightarrow{0}$) to p^{μ}. Use eqs. (8) to show that

$$
\begin{equation*}
u(p, s)=\binom{\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}}{\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \xi_{s}} . \tag{11}
\end{equation*}
$$

(c) Use similar arguments to show that

$$
\begin{equation*}
v(p, s)=\binom{+\sqrt{E-\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}}{-\sqrt{E+\mathbf{p} \cdot \boldsymbol{\sigma}} \eta_{s}} \tag{12}
\end{equation*}
$$

where η_{s} are two-component $S O(3)$ spinors normalized to $\eta_{s}^{\dagger} \eta_{s^{\prime}}=\delta_{s, s^{\prime}}$.

Physically, the η_{s} should have opposite spins from ξ_{s} - the holes in the Dirac sea have opposite spins (as well as p^{μ}) from the missing negative-energy particles. Mathematically, this requires $\eta_{s}^{\dagger} \mathbf{S} \eta_{s}=-\xi_{s}^{\dagger} \mathbf{S} \xi_{s}$; we may solve this condition by letting $\eta_{s}=\sigma_{2} \xi_{s}^{*}= \pm i \xi_{-s}$.
(d) Check that this is a solution, then show that it leads to $v(p, s)=\gamma^{2} u^{*}(p, s)$.
(e) Show that for ultra-relativistic electrons or positrons of definite helicity $\lambda= \pm \frac{1}{2}$, the Dirac plane waves become chiral - i.e., dominated by one of the two irreducible components $\mathbf{2}$ or $\overline{\mathbf{2}}$ of the Dirac spinor $\mathbf{2} \oplus \overline{\mathbf{2}}$ while the other component becomes negligible. (The $\mathbf{2}$ component is the left-handed Weyl spinor while the $\overline{\mathbf{2}}$ component is the right-handed Weyl spinor. I shall discuss them later in class.) Specifically,

$$
\begin{align*}
& u\left(p,-\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\xi_{L}}{0}, \quad u\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{0}{\xi_{R}}, \\
& v\left(p,-\frac{1}{2}\right) \approx-\sqrt{2 E}\binom{0}{\eta_{L}}, \quad v\left(p,+\frac{1}{2}\right) \approx \sqrt{2 E}\binom{\eta_{R}}{0} . \tag{13}
\end{align*}
$$

Note that for electrons the left/right chirality is same as the helicity, but for positrons the chirality is opposite from the helicity.

Finally, let's establish some basis-independent properties of the Dirac spinors $u(p, s)$ and $v(p, s)$ - although you may use the Weyl basis to verify them.
(f) Show that

$$
\begin{equation*}
\bar{u}(p, s) u\left(p, s^{\prime}\right)=+2 m \delta_{s, s^{\prime}}, \quad \bar{v}(p, s) v\left(p, s^{\prime}\right)=-2 m \delta_{s, s^{\prime}} \tag{14}
\end{equation*}
$$

note that the normalization here is different from eq. (9) for the $v^{\dagger} u$ and $v^{\dagger} v$.
(g) There are only two independent $S O(3)$ spinors, hence $\sum_{s} \xi_{s} \xi_{s}^{\dagger}=\sum_{s} \eta_{s}^{\dagger} \eta_{s}=\mathbf{1}_{2 \times 2}$. Use this fact to show that

$$
\begin{equation*}
\sum_{s=1,2} u_{\alpha}(p, s) \bar{u}_{\beta}(p, s)=(\not p+m)_{\alpha \beta} \quad \text { and } \quad \sum_{s=1,2} v_{\alpha}(p, s) \bar{v}_{\beta}(p, s)=(\not p-m)_{\alpha \beta} \tag{15}
\end{equation*}
$$

