
PHY–396 K. Problem set #5. Due October 13, 2011.

1. First, an exercise in Dirac matrices γµ. Please do not assume any specific form of these

4× 4 matrices, just use the anti-commutation relations

γµγν + γνγµ = 2gµν . (1)

In class, I have defined the spin matrices

Sµν = −Sνµ def
= i

4 [γµ, γν ] (2)

and showed that [
Sµν , γλ

]
= igνλγµ − igµλγν . (3)

(a) Show that the spin matrices Sµν have commutation relations of the Lorentz generators,

[
Sκλ, Sµν

]
= igλµSκν − igλνSκµ − igκµSλν + igκνSλµ. (4)

A continuous Lorentz transform obtains from integrating infinite sequences of infinitesimal

transforms X ′µ = Xµ + εΘµ
νX

ν for antisymmetric Θµν = −Θνµ (when both indices are

down or both up); the finite transform is X ′µ = LµνX
ν where

L = exp(Θ), i. e., Lµν = δµν + Θµ
ν + 1

2Θµ
λΘλ

ν + 1
6Θµ

κΘκ
λΘλ

ν + · · · . (5)

(b) Let L be a Lorentz transform of the form (5), and let MD(L) = exp
(
− i

2ΘαβS
αβ
)
.

Show that M−1D (L)γµMD(L) = Lµνγ
ν .

Hint: use Hadamard Lemma eABe−A = B+[A,B]+ 1
2 [A, [A,B]]+ 1

6 [A, [A, [A,B]]]+· · ·.

Next, a little more algebra:

(c) Calculate {γρ, γλγµγν}, [γρ, γκγλγµγν ] and [Sρσ, γλγµγν ].

(d) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν , and γαγλγµγνγα =

−2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.
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2. Now consider the γ5
def
= iγ0γ1γ2γ3 matrix.

(a) Show that γ5 anticommutes with each of the γµ matrices — γ5γµ = −γµγ5 — and

commutes with all the spin matrices Sµν .

(b) Show that γ5 is hermitian and that (γ5)2 = 1.

(c) Show that γ5 = (i/24)εκλµνγ
κγλγµγν and γ[κγλγµγν] = −24iεκλµν γ5.

(d) Show that γ[λγµγν] = −6iεκλµν γκγ
5.

(e) Show that any 4 × 4 matrix Γ is a unique linear combination of the following 16

matrices: 1, γµ, 1
2γ

[µγν], γ5γµ, and γ5.

∗ My conventions here are: ε0123 = −1, ε0123 = +1, γ[µγν] = γµγν − γνγµ,

γ[λγµγν] = γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ, etc.

Now consider Dirac matrices in spacetime dimensions d 6= 4. Such matrices always satisfy

the Clifford algebra (1), but their sizes depend on d.

Let Γ = inγ0γ1 · · · γd−1 be the generalization of the γ5 to d dimensions; the pre-factor

in = ±i or ±1 is chosen such that Γ = Γ† and Γ2 = +1.

(f) For even d, Γ anticommutes with all the γµ. Prove this, and use this fact to show that

there are 2d independent products of the γµ matrices, and consequently the matrices

should be 2d/2 × 2d/2.

(g) For odd d, Γ commutes with all the Γµ — prove this. Consequently, one can set Γ = +1

or Γ = −1; the two choices lead to in-equivalent sets of the γµ.

Classify the independent products of the γµ for odd d and show that their net number

is 2d−1; consequently, the matrices should be 2(d−1)/2 × 2(d−1)/2.

3. Let’s go back to d = 3 + 1. Since all the spin matrices Sµν commute with the γ5, all the

MD(L) = exp
(
− i

2ΘαβS
αβ
)

matrices are block-diagonal in the eigenbasis of the γ5. In the

Weyl convention for the γ matrices,

MD(L) =

(
ML(L) 0

0 MR(L)

)
(6)

where all blocks are 2 × 2. This makes the Dirac spinor a reducible representation of the

continuous Lorentz group SO+(3, 1).
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Write down the explicit Sµν matrices in the Weyl convention, then use them to show that

the ML(L) block in eq. (6) is precisely the SL(2,C) matrix M from problem 4 of the

last homework while the MR block is the M =
(
M †
)−1

= σ2M
∗σ2 matrix from the same

problem. In particular, for a pure rotation through angle ϕ around axis n

ML = MR = exp(− i
2ϕn · σσ). (7)

while for a pure boost of rapidity r in the direction n, ML = exp(− r
2 n · σσ) but MR =

exp(+ r
2 n · σσ); in terms of the boost’s β and γ parameters,

ML =
√
γ ×

√
1 − β n · σσ , MR =

√
γ ×

√
1 + β n · σσ . (8)

4. Finally, consider the plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x) of the Dirac equa-

tion. The 4–component spinors u(p, s) and v(p, s) satisfy

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0, u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ .

(9)

Let’s writing down explicit formulae for these spinors in the Weyl basis for the γµ matrices.

(a) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(10)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(b) For other momenta, u(p, s) = M(boost)u(p = 0, s) for the boost that turns (m,~0) to

pµ. Use eqs. (8) to show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
. (11)

(c) Use similar arguments to show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
(12)

where ηs are two-component SO(3) spinors normalized to η†sηs′ = δs,s′ .

3
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Physically, the ηs should have opposite spins from ξs — the holes in the Dirac sea have

opposite spins (as well as pµ) from the missing negative-energy particles. Mathematically,

this requires η†sSηs = −ξ†sSξs; we may solve this condition by letting ηs = σ2ξ
∗
s = ±iξ−s.

(d) Check that this is a solution, then show that it leads to v(p, s) = γ2u∗(p, s).

(e) Show that for ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 , the

Dirac plane waves become chiral — i.e., dominated by one of the two irreducible

components 2 or 2̄ of the Dirac spinor 2 ⊕ 2̄ while the other component becomes

negligible. (The 2 component is the left-handed Weyl spinor while the 2̄ component

is the right-handed Weyl spinor. I shall discuss them later in class.) Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(13)

Note that for electrons the left/right chirality is same as the helicity, but for positrons

the chirality is opposite from the helicity.

Finally, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and

v(p, s) — although you may use the Weyl basis to verify them.

(f) Show that

ū(p, s)u(p, s′) = +2mδs,s′ , v̄(p, s)v(p, s′) = −2mδs,s′ ; (14)

note that the normalization here is different from eq. (9) for the v†u and v†v.

(g) There are only two independent SO(3) spinors, hence
∑

s ξsξ
†
s =

∑
s η
†
sηs = 12×2. Use

this fact to show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (15)
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