1. First, an exercise in Dirac matrices γ^{μ} . Please do not assume any specific form of these 4×4 matrices, just use the anti-commutation relations

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}. \tag{1}$$

In class, I have defined the spin matrices

$$S^{\mu\nu} = -S^{\nu\mu} \stackrel{\text{def}}{=} \frac{i}{4} \left[\gamma^{\mu}, \gamma^{\nu} \right] \tag{2}$$

and showed that

$$\left[S^{\mu\nu},\gamma^{\lambda}\right] = ig^{\nu\lambda}\gamma^{\mu} - ig^{\mu\lambda}\gamma^{\nu}.$$
(3)

(a) Show that the spin matrices $S^{\mu\nu}$ have commutation relations of the Lorentz generators,

$$\left[S^{\kappa\lambda}, S^{\mu\nu}\right] = ig^{\lambda\mu}S^{\kappa\nu} - ig^{\lambda\nu}S^{\kappa\mu} - ig^{\kappa\mu}S^{\lambda\nu} + ig^{\kappa\nu}S^{\lambda\mu}.$$
 (4)

A continuous Lorentz transform obtains from integrating infinite sequences of infinitesimal transforms $X'^{\mu} = X^{\mu} + \epsilon \Theta^{\mu}_{\nu} X^{\nu}$ for antisymmetric $\Theta_{\mu\nu} = -\Theta_{\nu\mu}$ (when both indices are down or both up); the finite transform is $X'^{\mu} = L^{\mu}_{\nu} X^{\nu}$ where

$$L = \exp(\Theta), \quad i.e., \quad L^{\mu}_{\nu} = \delta^{\mu}_{\nu} + \Theta^{\mu}_{\nu} + \frac{1}{2}\Theta^{\mu}_{\lambda}\Theta^{\lambda}_{\nu} + \frac{1}{6}\Theta^{\mu}_{\kappa}\Theta^{\kappa}_{\lambda}\Theta^{\lambda}_{\nu} + \cdots$$
(5)

(b) Let L be a Lorentz transform of the form (5), and let $M_D(L) = \exp\left(-\frac{i}{2}\Theta_{\alpha\beta}S^{\alpha\beta}\right)$. Show that $M_D^{-1}(L)\gamma^{\mu}M_D(L) = L^{\mu}_{\ \nu}\gamma^{\nu}$. Hint: use Hadamard Lemma $e^ABe^{-A} = B + [A, B] + \frac{1}{2}[A, [A, B]] + \frac{1}{6}[A, [A, [A, B]]] + \cdots$.

Next, a little more algebra:

- (c) Calculate $\{\gamma^{\rho}, \gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\}, [\gamma^{\rho}, \gamma^{\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}]$ and $[S^{\rho\sigma}, \gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}].$
- (d) Show that $\gamma^{\alpha}\gamma_{\alpha} = 4$, $\gamma^{\alpha}\gamma^{\nu}\gamma_{\alpha} = -2\gamma^{\nu}$, $\gamma^{\alpha}\gamma^{\mu}\gamma^{\nu}\gamma_{\alpha} = 4g^{\mu\nu}$, and $\gamma^{\alpha}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\gamma_{\alpha} = -2\gamma^{\nu}\gamma^{\mu}\gamma^{\lambda}$. Hint: use $\gamma^{\alpha}\gamma^{\nu} = 2g^{\nu\alpha} - \gamma^{\nu}\gamma^{\alpha}$ repeatedly.

- 2. Now consider the $\gamma^5 \stackrel{\text{def}}{=} i\gamma^0\gamma^1\gamma^2\gamma^3$ matrix.
 - (a) Show that γ^5 anticommutes with each of the γ^{μ} matrices $\gamma^5 \gamma^{\mu} = -\gamma^{\mu} \gamma^5$ and commutes with all the spin matrices $S^{\mu\nu}$.
 - (b) Show that γ^5 is hermitian and that $(\gamma^5)^2 = 1$.
 - (c) Show that $\gamma^5 = (i/24)\epsilon_{\kappa\lambda\mu\nu}\gamma^{\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}$ and $\gamma^{[\kappa}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu]} = -24i\epsilon^{\kappa\lambda\mu\nu}\gamma^5$.
 - (d) Show that $\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = -6i\epsilon^{\kappa\lambda\mu\nu}\gamma_{\kappa}\gamma^5$.
 - (e) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices: 1, γ^{μ} , $\frac{1}{2}\gamma^{[\mu}\gamma^{\nu]}$, $\gamma^{5}\gamma^{\mu}$, and γ^{5} .
 - * My conventions here are: $\epsilon^{0123} = -1$, $\epsilon_{0123} = +1$, $\gamma^{[\mu}\gamma^{\nu]} = \gamma^{\mu}\gamma^{\nu} \gamma^{\nu}\gamma^{\mu}$, $\gamma^{[\lambda}\gamma^{\mu}\gamma^{\nu]} = \gamma^{\lambda}\gamma^{\mu}\gamma^{\nu} - \gamma^{\lambda}\gamma^{\nu}\gamma^{\mu} + \gamma^{\mu}\gamma^{\nu}\gamma^{\lambda} - \gamma^{\mu}\gamma^{\lambda}\gamma^{\nu} + \gamma^{\nu}\gamma^{\lambda}\gamma^{\mu} - \gamma^{\nu}\gamma^{\mu}\gamma^{\lambda}$, etc.

Now consider Dirac matrices in spacetime dimensions $d \neq 4$. Such matrices always satisfy the Clifford algebra (1), but their sizes depend on d.

Let $\Gamma = i^n \gamma^0 \gamma^1 \cdots \gamma^{d-1}$ be the generalization of the γ^5 to d dimensions; the pre-factor $i^n = \pm i$ or ± 1 is chosen such that $\Gamma = \Gamma^{\dagger}$ and $\Gamma^2 = +1$.

- (f) For even d, Γ anticommutes with all the γ^{μ} . Prove this, and use this fact to show that there are 2^d independent products of the γ^{μ} matrices, and consequently the matrices should be $2^{d/2} \times 2^{d/2}$.
- (g) For odd d, Γ commutes with all the Γ^{μ} prove this. Consequently, one can set $\Gamma = +1$ or $\Gamma = -1$; the two choices lead to in-equivalent sets of the γ^{μ} .

Classify the independent products of the γ^{μ} for odd d and show that their net number is 2^{d-1} ; consequently, the matrices should be $2^{(d-1)/2} \times 2^{(d-1)/2}$.

3. Let's go back to d = 3 + 1. Since all the spin matrices $S^{\mu\nu}$ commute with the γ^5 , all the $M_D(L) = \exp\left(-\frac{i}{2}\Theta_{\alpha\beta}S^{\alpha\beta}\right)$ matrices are block-diagonal in the eigenbasis of the γ^5 . In the Weyl convention for the γ matrices,

$$M_D(L) = \begin{pmatrix} M_L(L) & 0\\ 0 & M_R(L) \end{pmatrix}$$
(6)

where all blocks are 2×2 . This makes the Dirac spinor a *reducible* representation of the continuous Lorentz group $SO^+(3, 1)$.

Write down the explicit $S^{\mu\nu}$ matrices in the Weyl convention, then use them to show that the $M_L(L)$ block in eq. (6) is precisely the $SL(2, \mathbb{C})$ matrix M from problem 4 of the last homework while the M_R block is the $\overline{M} = (M^{\dagger})^{-1} = \sigma_2 M^* \sigma_2$ matrix from the same problem. In particular, for a pure rotation through angle φ around axis **n**

$$M_L = M_R = \exp(-\frac{i}{2}\varphi \mathbf{n} \cdot \boldsymbol{\sigma}).$$
 (7)

while for a pure boost of *rapidity* r in the direction \mathbf{n} , $M_L = \exp(-\frac{r}{2}\mathbf{n}\cdot\boldsymbol{\sigma})$ but $M_R = \exp(+\frac{r}{2}\mathbf{n}\cdot\boldsymbol{\sigma})$; in terms of the boost's β and γ parameters,

$$M_L = \sqrt{\gamma} \times \sqrt{1 - \beta \mathbf{n} \cdot \boldsymbol{\sigma}}, \qquad M_R = \sqrt{\gamma} \times \sqrt{1 + \beta \mathbf{n} \cdot \boldsymbol{\sigma}}.$$
 (8)

4. Finally, consider the plane-wave solutions $e^{-ipx}u(p,s)$ and $e^{+ipx}v(p,x)$ of the Dirac equation. The 4–component spinors u(p,s) and v(p,s) satisfy

$$(\not p - m)u(p, s) = 0, \quad (\not p + m)v(p, s) = 0, \quad u^{\dagger}(p, s)u(p, s') = v^{\dagger}(p, s)v(p, s') = 2E\delta_{s,s'}.$$
(9)

Let's writing down explicit formulae for these spinors in the Weyl basis for the γ^{μ} matrices. (a) Show that for $\mathbf{p} = 0$,

$$u(\mathbf{p} = \mathbf{0}, s) = \begin{pmatrix} \sqrt{m} \, \xi_s \\ \sqrt{m} \, \xi_s \end{pmatrix} \tag{10}$$

where ξ_s is a two-component SO(3) spinor encoding the electron's spin state. The ξ_s are normalized to $\xi_s^{\dagger}\xi_{s'} = \delta_{s,s'}$.

(b) For other momenta, $u(p,s) = M(\text{boost})u(\mathbf{p} = 0, s)$ for the boost that turns $(m, \vec{0})$ to p^{μ} . Use eqs. (8) to show that

$$u(p,s) = \begin{pmatrix} \sqrt{E - \mathbf{p} \cdot \boldsymbol{\sigma}} \xi_s \\ \sqrt{E + \mathbf{p} \cdot \boldsymbol{\sigma}} \xi_s \end{pmatrix}.$$
 (11)

(c) Use similar arguments to show that

$$v(p,s) = \begin{pmatrix} +\sqrt{E - \mathbf{p} \cdot \boldsymbol{\sigma}} \eta_s \\ -\sqrt{E + \mathbf{p} \cdot \boldsymbol{\sigma}} \eta_s \end{pmatrix}$$
(12)

where η_s are two-component SO(3) spinors normalized to $\eta_s^{\dagger} \eta_{s'} = \delta_{s,s'}$.

Physically, the η_s should have opposite spins from ξ_s — the holes in the Dirac sea have opposite spins (as well as p^{μ}) from the missing negative-energy particles. Mathematically, this requires $\eta_s^{\dagger} \mathbf{S} \eta_s = -\xi_s^{\dagger} \mathbf{S} \xi_s$; we may solve this condition by letting $\eta_s = \sigma_2 \xi_s^* = \pm i \xi_{-s}$.

- (d) Check that this is a solution, then show that it leads to $v(p,s) = \gamma^2 u^*(p,s)$.
- (e) Show that for ultra-relativistic electrons or positrons of definite helicity $\lambda = \pm \frac{1}{2}$, the Dirac plane waves become *chiral i.e.*, dominated by one of the two irreducible components **2** or $\overline{\mathbf{2}}$ of the Dirac spinor $\mathbf{2} \oplus \overline{\mathbf{2}}$ while the other component becomes negligible. (The **2** component is the left-handed Weyl spinor while the $\overline{\mathbf{2}}$ component is the right-handed Weyl spinor. I shall discuss them later in class.) Specifically,

$$u(p, -\frac{1}{2}) \approx \sqrt{2E} \begin{pmatrix} \xi_L \\ 0 \end{pmatrix}, \qquad u(p, +\frac{1}{2}) \approx \sqrt{2E} \begin{pmatrix} 0 \\ \xi_R \end{pmatrix},$$

$$v(p, -\frac{1}{2}) \approx -\sqrt{2E} \begin{pmatrix} 0 \\ \eta_L \end{pmatrix}, \qquad v(p, +\frac{1}{2}) \approx \sqrt{2E} \begin{pmatrix} \eta_R \\ 0 \end{pmatrix}.$$
 (13)

Note that for electrons the left/right chirality is same as the helicity, but for positrons the chirality is opposite from the helicity.

Finally, let's establish some basis-independent properties of the Dirac spinors u(p, s) and v(p, s) — although you may use the Weyl basis to verify them.

(f) Show that

$$\bar{u}(p,s)u(p,s') = +2m\delta_{s,s'}, \quad \bar{v}(p,s)v(p,s') = -2m\delta_{s,s'}; \quad (14)$$

note that the normalization here is different from eq. (9) for the $v^{\dagger}u$ and $v^{\dagger}v$.

(g) There are only two independent SO(3) spinors, hence $\sum_s \xi_s \xi_s^{\dagger} = \sum_s \eta_s^{\dagger} \eta_s = \mathbf{1}_{2\times 2}$. Use this fact to show that

$$\sum_{s=1,2} u_{\alpha}(p,s)\bar{u}_{\beta}(p,s) = (\not\!\!p+m)_{\alpha\beta} \text{ and } \sum_{s=1,2} v_{\alpha}(p,s)\bar{v}_{\beta}(p,s) = (\not\!\!p-m)_{\alpha\beta}.$$
(15)