PHY-396 K. Problem set #5. Due October 13, 2011.

. First, an exercise in Dirac matrices 7. Please do not assume any specific form of these

4 x 4 matrices, just use the anti-commutation relations
Y+ A = 29" (1)
In class, I have defined the spin matrices
S = —gvm E Ly Y] 2)

and showed that
(S, 77] = g™t — gty (3)
(a) Show that the spin matrices S have commutation relations of the Lorentz generators,

[Sn)\, Sul/:| _ ig)‘“SK” _ Z'g)\VSH,U, _ ignuSAV + ,égm/s)\u‘ (4)

A continuous Lorentz transform obtains from integrating infinite sequences of infinitesimal
transforms X" = X* + €04, X" for antisymmetric O = —0,, (when both indices are

down or both up); the finite transform is X’* = L/, X where

L = exp(©), id.e, LF =4+ 04 + 101074 + lOrenes, + . (5)

(b) Let L be a Lorentz transform of the form (5), and let M, (L) = exp(—%46,35").
Show that My (L)y*Mp(L) = LhA".
Hint: use [Tadamard Lemmd e Be=4 = B+[A, B]—I—%[A, [A, B]]—i—%[A, [A,[A, B]]]+- -

Next, a little more algebra:
(c) Calculate {7, v y"9"}, [77, vy MyHa%] and [SP7, 4 A yHAY].
(d) Show that Y*ya = 4, YY" Ya = —29", Y970 = 49", and Y2y MYy, =

— 27"t
Hint: use y*y" = 2¢"* — 4¥~* repeatedly.


http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula#The_Hadamard.5Bcitation_needed.5D_lemma

2. Now consider the v° def iv091~y2~3 matrix.

(a) Show that 4> anticommutes with each of the v* matrices — 75y* = —y#4° — and

commutes with all the spin matrices S*”.
) Show that 4° is hermitian and that (y°)% = 1.
(¢) Show that 7° = (i/24)€x Yy 9" and AlEAA AT = gAY A5
(d) Show that yAyiy¥l = —6ierM ~,~5.
)

Show that any 4 x 4 matrix I' is a unique linear combination of the following 16

matrices: 1, y*, %7[/‘7’/1, 757“, and 75.

* My conventions here are: €123 = —1, ¢g193 = +1, 7[“7”] = yHAyY — Ayt
S e o e e e LA S e e e o G U e e L e L =70
Now consider Dirac matrices in spacetime dimensions d # 4. Such matrices always satisfy

the Clifford algebra (1), but their sizes depend on d.

Let T' = i"49%1... 491 be the generalization of the 4° to d dimensions; the pre-factor
i" = =44 or +1 is chosen such that I' = I't and I'2 = +1.

(f) For even d, I anticommutes with all the v#. Prove this, and use this fact to show that
there are 2¢ independent products of the v# matrices, and consequently the matrices

should be 24/2 x 24/2

(g) For oddd, " commutes with all the I'* — prove this. Consequently, one can set I' = +1

or I' = —1; the two choices lead to in-equivalent sets of the .

(Classify the independent products of the y* for odd d and show that their net number

is 2971; consequently, the matrices should be 2(d=1)/2 ¢ o(d=1)/2,

3. Let’s go back to d = 3 4+ 1. Since all the spin matrices S commute with the +°, all the
Mp(L) = exp(—%@aﬂsaﬁ ) matrices are block-diagonal in the eigenbasis of the 7°. In the
Weyl convention for the v matrices,

(ML) 0
MD(L)—< 0 MR(L)> (6)

where all blocks are 2 x 2. This makes the Dirac spinor a reducible representation of the

continuous Lorentz group SOT(3,1).



Write down the explicit S matrices in the Weyl convention, then use them to show that
the My (L) block in eq. (6) is precisely the SL(2,C) matrix M from problem 4 of the
Ilast homeworkl while the Mp block is the M = (M T)_l = 09 M* 09 matrix from the same

problem. In particular, for a pure rotation through angle ¢ around axis n
My = Mp = exp(—5pn-0). (7)

while for a pure boost of rapidity r in the direction n, M = exp(—5n - o) but Mp =

exp(+5n-0); in terms of the boost’s 3 and y parameters,

ML:ﬁX\/l—ﬁII'O, MR:ﬁX\/l—i-ﬁn'O'. (8)

. Finally, consider the plane-wave solutions e~%u(p, s) and e*®%v(p, x) of the Dirac equa-

tion. The 4—component spinors u(p, s) and v(p, s) satisfy

B—mu(p,s) = 0, F+mv(p,s) = 0, ul(p,s)ulp,s’) = vi(p,s)v(p,s) = 2B, .
(9)

Let’s writing down explicit formulae for these spinors in the Weyl basis for the v matrices.

(a) Show that for p =0,

(10)

u(p=0,s) = <m58>

Vm&s
where & is a two-component SO(3) spinor encoding the electron’s spin state. The &

are normalized to éés/ = 05,/

(b) For other momenta, u(p, s) = M (boost)u(p = 0, s) for the boost that turns (m,0) to
p*. Use egs. (8) to show that

VE —p-0&s
u(p,s) = ( )

o (11)
E+ p- 058

(c¢) Use similar arguments to show that

by _ [VETPO
s —VE+p-ons

where 7, are two-component SO(3) spinors normalized to 77;773' = g,/


http://www.ph.utexas.edu/~vadim/Classes/2011f/hw04.pdf

Physically, the 75 should have opposite spins from £; — the holes in the Dirac sea have
opposite spins (as well as p*) from the missing negative-energy particles. Mathematically,

this requires n;rSns = —§IS§5; we may solve this condition by letting ns = 02£} = +ié_s.

(d) Check that this is a solution, then show that it leads to v(p, s) = v2u*(p, s).

(e) Show that for ultra-relativistic electrons or positrons of definite helicity A\ = j:%, the
Dirac plane waves become chiral — 1i.e., dominated by one of the two irreducible
components 2 or 2 of the Dirac spinor 2 @ 2 while the other component becomes
negligible. (The 2 component is the left-handed Weyl spinor while the 2 component
is the right-handed Weyl spinor. I shall discuss them later in class.) Specifically,

u(p,—3) ~ @<§L>, u(p,+3) =~ @(0>,

0 o (13)
v(p,—3) ~ — 2E< O), v(p,+3) = @(HR>.

ng 0

Note that for electrons the left /right chirality is same as the helicity, but for positrons
the chirality is opposite from the helicity.

Finally, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and

v(p, s) — although you may use the Weyl basis to verify them.

(f) Show that
u(p, s)u(p,s’) = +2més. ¢,  V(p, s)o(p,s) = —2mds ¢ ; (14)

note that the normalization here is different from eq. (9) for the vTu and vTv.

(g) There are only two independent SO(3) spinors, hence ) 5552 => . nlns =1,.,. Use
this fact to show that

Z ua(p, s)ug(p,s) = (P+m)as and Z va(p, s)vg(p,s) = B—m)ap.  (15)

s=1,2 s=1,2



