
PHY–396 K. Problem set #7. Due October 27, 2011.

1. Consider an O(N) symmetric Lagrangian for N interacting real scalar fields,

L =
1

2

N∑
a=1

(
∂µΦa

)2 − m2

2

N∑
a=1

Φ2
a −

λ

24

(
N∑
a=1

Φ2
a

)2

. (1)

By the Noether theorem, the continuous SO(N) subgroup of (N) symmetry gives rise to

1
2N(N − 1) conserved currents

Jµab(x) = −Jµba(x) = Φa(x) ∂µΦb(x)− Φb(x) ∂µΦa(x). (2)

In the quantum field theory, these currents become operators

Ĵµab(x) = −Ĵµba(x) = Φ̂a(x) ∂µΦ̂b(x) − Φ̂b(x) ∂µΦ̂a(x), (3)

or in the Schrödinger picture,

Ĵab(x) = −Φ̂a(x)∇Φ̂b(x) + Φ̂b(x)∇Φ̂a(x), Ĵ0
ab(x) = Φ̂a(x)Π̂b(x) − Φ̂b(x)Π̂a(x). (4)

This problem is about the net charge operators

Q̂ab = −Q̂ba =

∫
d3x Ĵ0(x) =

∫
d3x

(
Φ̂a(x)Π̂b(x) − Φ̂b(x)Π̂a(x)

)
. (5)

(a) Use equal-time commutation relations of the Φ̂ and Π̂ fields to show that

[
Q̂ab,Φc(x)

]
= iδbcΦ̂a(x) − iδacΦ̂b(x) and

[
Q̂ab,Πc(x)

]
= iδbcΠ̂a(x) − iδacΠ̂b(x).

(6)

(b) Write down the Hamiltonian operator for the interacting fields and verify that it com-

mutes with all the charges. In the Heisenberg picture, this makes all the charge operators

Q̂ab time independent.
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(c) Verify that the Q̂ab obey commutation relations of the SO(N) generators,[
Q̂ab, Q̂cd

]
= −iδ[c[b[Q̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc . (7)

(d) In the Schrödinger picture Φ̂a(x) and Π̂a(x) can be expanded into creation and annihila-

tion operators as if they were free fields. Show that in terms of creation and annihilation

operators, the charges (5) become

Q̂ab =

∫
d3p

(2π)3
1

2Ep

(
−iâ†p,aâp,b + iâ†p,bâp,b

)
. (8)

Now consider a finite symmetry Rab ∈ SO(N); in general, R = exp(Θ) for some real

antisymmetric N ×N matrix Θab = −Θba. In the Fock space of the scalar field theory, this

symmetry is represented by the unitary operator

D̂(R) = exp
(
− i

2ΘabQ̂ab

)
(9)

where inside the exponent there is implicit sum over a and b.

(e) Verify that this operators acts on single-particle states |p, a〉 as appropriate ‘rotation’

of the a index,

D̂(R) |p, a〉 = Rab |p, b〉 . (10)

(f) The charges (8) are additive one-body-at-a-time operators. Use this fact to derive the

action of the D̂(R) operator on multi-particle states.

Finally, for N = 2 the SO(2) symmetry is the phase symmetry of one complex field Φ =

(Φ1 + iΦ2)/
√

2 and its conjugate Φ∗ = (Φ1 − iΦ2)/
√

2. In the Fock space, they give rise to

particles and anti-particles of opposite charges.

(g) show that for N = 2

Q̂21 = −Q̂12 = N̂particles − N̂antiparticles =

∫
d3p

(2π)3
1

2Ep

(
â†pâp − b̂†pb̂p

)
. (11)
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2. The rest of this homework is about classical fields and their stress-energy tensors.

As I explained in class, applying Noether theorem to translational symmetries xµ → xµ+ cµ

of a classical field theory produces 4 conserved currents packaged into a 2-index stress-energy

tensor

TµνN =
∑
a

∂L
∂(∂µφa)

∂νφa − gµν L. (12)

In this formula, the φa are generic fields and a stands for all of their indices, including

Lorentz vector, tensor, or spinor indices, internal symmetry indices (if any), and even labels

distinguishing field species unrelated by any symmetries.

Unfortunately, for non-scalar fields the Noether stress-energy tensor (12) is not symmetric,

TµνN 6= T νµN . To make a symmetric stress-energy tensor — which is required for conserved

currents for Lorentz symmetries

Mλ,µν = −Mλ,νµ = xµT λν − xνT λµ + Mλ,µν
spin , ∂λMλ,µν = 0 (13)

as well as coupling to General Relativity — one adds a total divergence to the Noether

stress-energy tensor,

Tµν = TµνNoether + ∂λKλµ,ν , (14)

where Kλµ,ν = −Kµλ,ν is some 3–index Lorentz tensor antisymmetric in its first two indices.

It’s specific form as a function of the fields and their derivatives is whatever it takes to make

the stress-energy tensor symmetric. Tµν = T νµ.

(a) Show that regardless of the specific form of Kλµ,ν(φ, ∂φ),

∂µT
µν = ∂µT

µν
Noether = (hopefully) = 0, (15)

Pµnet ≡
∫
d3xT 0µ =

∫
d3xT 0µ

Noether . (16)

Note: assume that the fields — and hence K — go to zero fast enough for x→∞.
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As an example of K–corrected stress-energy tensor (14), consider the free electromagnetic

fields Aµ(x) with Lagrangian

L(Aµ, ∂νAµ) = −1
4 FµνF

µν where Fµν ≡ ∂µAν − ∂νAµ . (17)

(b) Write down the Noether stress-energy tensor TµνN for the free electromagnetic fields and

show that it is neither symmetric nor gauge invariant.

(c) The properly symmetric — and also gauge invariant — stress-energy tensor for the free

electromagnetism is

TµνEM = −FµλF νλ + 1
4 g

µν FκλF
κλ. (18)

Show that this expression indeed has form (14) for some Kλµ,ν .

(d) Write down the components of the stress-energy tensor (18) in non-relativistic notations

and make sure you have the familiar electromagnetic energy density, momentum density

and pressure.

Now consider the electromagnetic fields coupled to the electric current Jµ of some charged

“matter” fields. Because of this coupling, only the net energy-momentum of the whole field

system should be conserved, but not the separate PµEM and Pµmat. Consequently, we should

have

∂µT
µν
net = 0 for Tµνnet = TµνEM + Tµνmat (19)

but generally ∂µT
µν
EM 6= 0 and ∂µT

µν
mat 6= 0.

(e) Use Maxwell’s equations to show that

∂µT
µν
EM = −F νλJλ (20)

and therefore any system of charged matter fields should have its stress-energy tensor

related to the electric current Jλ according to

∂µT
µν
mat = +F νλJλ. (21)
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3. As a simplest example of charged matter, consider a complex scalar field Ψ(x) of electric

charge q 6= 0. The net Lagrangian of the Φ, Φ∗ and Aµ fields is

Lnet = DµΦ∗DµΦ − m2Φ∗Φ − 1
4F

µνFµν (22)

where

DµΦ = (∂µ + iqAµ)Φ and DµΦ∗ = (∂µ − iqAµ)Φ∗ (23)

are the covariant derivatives. Through these derivatives, the Lagrangian (22) depend on the

EM potentials Aµ and not just the EM tensions Fµν , which leads to a non-trivial electric

current

Jµ
def
= − ∂L

∂Aµ
. (24)

(a) Write down the equation of motion for all fields in a covariant form. Also, write down

the electric current (24) in a manifestly gauge-invariant form and verify its conservation,

∂µJ
µ = 0 (as long as the scalar fields satisfy their equations of motion).

(b) Write down the Noether stress-energy tensor for the whole field system and show that

Tµνnet ≡ TµνEM + Tµνmat = TµνNoether + ∂λKλµ,ν , (25)

where TµνEM is exactly as in eq. (18) for the free EM fields, the Kλµ,ν tensor is also exactly

as in the previous problem for the free EM, while

Tµνmat = DµΦ∗DνΦ + DνΦ∗DµΦ − gµν
(
DλΦ∗DλΦ − m2Φ∗Φ

)
. (26)

Note: In the presence of an electric current Jµ, the ∂λKλµν correction to the electro-

magnetic stress-energy tensor contains an extra JµAν term. This term is important for

obtaining a gauge-invariant stress-energy tensor (26) for the scalar field.

(c) Use the scalar fields’ equations of motion and the non-commutativity of covariant deriva-

tives

[Dµ, Dν ]Φ = iqFµνΦ, [Dµ, Dν ]Φ∗ = −iqFµνΦ∗ (27)

to verify eq. (21) for the charged scalar fields and hence conservation of the net stress-

energy tensor (25).
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