
PHY–396 K. Problem set #8. Due November 3, 2011.

1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e.,

a set of N fields (complex scalars or Dirac fermions) which transform as a complex N–

vector,

Ψ′(x) = U(x)Ψ(x) i. e. Ψ′i(x) =
∑
j

U j
i (x)Ψj(x), i, j = 1, 2, . . . , N (1)

where U(x) is an x–dependent unitary N×N matrix, detU(x) ≡ 1. Now consider N2−1

real fields Φa(x) forming an adjoint multiplet: In matrix form

Φ(x) =
∑
a

Φa(x)× λa

2
(2)

is a traceless hermitian N×N matrix which transforms under the local SU(N) symmetry

as

Φ′(x) = U(x)Φ(x)U †(x). (3)

Note that this transformation law preserves the Φ† = Φ and tr(Φ) = 0 conditions.

In class, I have argued (using covariant derivatives) that the tension fields Faµν(x) them-

selves transform according to eq. (3). In other words, the Faµν(x) form an adjoint multiplet

of the SU(N) symmetry group.

(a) Verify the F ′µν(x) = U(x)Fµν(x)U †(x) transformation law directly from the definition

Fµν
def
= ∂µAν − ∂µAν + i[Aµ,Aν ]

?
and the non-abelian gauge transform of the Aµ

fields.

Now consider an adjoint multiplet of some fields Φa(x) — the Faµν(x), or some real

scalar fields, or Majorana fermions, whatever. The covariant derivatives Dµ act on such

? In my notations Aµ and Fµν are canonically normalized fields while Aµ = gAµ and Fµν = gFµν are
normalized by the symmetry action.
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multiplet as

DµΦ(x) = ∂µΦ(x) + i[Aµ(x),Φ(x)] ≡ ∂µΦ(x) + iAµ(x)Φ(x) − iΦ(x)Aµ(x) (4)

(b) Verify that these derivatives are indeed covariant — the DµΦ(x) transforms under

the local SU(N) symmetry exactly like the Φ(x) itself.

(c) Show that [Dµ, Dν ]Φ(x) = i[Fµν(x),Φ(x)].

(d) Now let’s go back to the tension fields Fµν(x) and verify the non-abelian Bianchi

identity DλFµν +DµFνλ +DνFλµ = 0.

(e) Show that for an infinitesimal variation of the non-abelian gauge field Aν(x) →
Aν(x) + δAν(x), the tension varies according to δFµν(x) = DµδAν(x)−DνδAµ(x).

Now consider the non-abelian gauge theory coupled to some currents Jaµ,

L = − 1

4g2

∑
a

FaµνFaµν −
∑
a

AaµJaµ

= − 1

2g2
tr (FµνFµν) − 2 tr(AµJµ).

(5)

The currents Jaµ follow from Aµ appearing in covariant derivatives of some scalar or

fermionic fields, but let’s keep them un-specific for a moment.

(f) Write down classical equations of motions for the gauge fields.

(g) Show that consistency of those equations require the currents to be covariantly con-

served,

DµJ
µ = ∂µJ

µ + i[Aµ, Jµ] = 0, (6)

or in components, ∂µJ
aµ − fabcAbµJcµ = 0.

Note: a covariantly conserved current does not lead to a conserved charge,

(d/dt)
∫
d3x Ja0(x, t) 6= 0!
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2. Now consider a general Lie group G with generators T̂ a obeying commutation relations

[T̂ a, T̂ b] = ifabcT̂ c. Under an infinitesimal gauge symmetry

G(x) = 1 + iΛa(x)T̂ a + · · · , infinitesimal Λa(x), (7)

the gauge fields Aaµ(x) transform as

Aaµ(x) → Aaµ(x) − DµΛa(x) = Aaµ(x) − ∂µΛa(x) − fabcΛb(x)Acµ(x). (8)

In any multiplet (m) of G, the generators are represented by matrices (T a(m))
β
α satis-

fying similar commutation relations, [T a(m), T
b
(m)] = ifabcT c(m). Fields Φα(x) (fermionic,

scalar, or whatever) belonging to some multiplet (m) transform under infinitesimal gauge

transforms (7) as

Φα(x) → Φα(x) + iΛa(x)(T a(m))
β
α Φβ(x). (9)

The covariant derivatives Dµ act on these fields as

DµΦα(x) = ∂µΦα(x) + iAaµ(x)(T a(m))
β
α Φβ(x). (10)

(a) Verify covariance of these derivatives under infinitesimal gauge transforms (7).

? For extra challenge, prove covariance of the derivatives (10) under finite gauge trans-

forms. This question is only for students familiar with basic theory of Lie groups.

Now consider Dirac fields Ψα(x) in some multiplet (m) of a simple non-abelian gauge

group G. The combined Lagrangian for the fermion and gauge fields is

L = − 1

4g2
FaµνFaµν + Ψ

α
(iγµDµ −m)Ψα . (11)

(b) Write down the currents Jaµ = −∂LΨ/∂Aµa of this theory and show that they form an

adjoint multiplet of G. That is, show that under infinitesimal gauge symmetries (7),

the currents transform into each other as

Jaµ(x) → Jaµ(x) − fabcΛb(x)Jcµ(x). (12)

Note: in the adjoint multiplet (T aadj)
bc = −ifabc; the commutations relations for the

T aadj follow from the Jacobi identity for the Lie algebra generators.
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? For extra challenge, show that for finite gauge transforms the currents transform

according to the adjoint representation of the group G. Again, this challenge is only

to students familiar with Lie groups.

(c) Finally, verify that the currents Jaµ(x) are covariantly conserved, DµJ
aµ = 0, provided

the fermionic fields Ψα(x) and Ψ
α
(x) satisfy their equations of motion.

3. A Dirac spinor field Ψ(x) (together with its conjugate Ψ(x)) is equivalent to two left-

handed Weyl spinor fields χ(x) and χ̃(x) (together with their right-hand conjugates

σ2χ
∗(x) and σ2χ̃∗(x)). In the Weyl basis (where γ5 is diagonal)

Ψ(x) =

(
χ(x)

−σ2χ̃
∗(x)

)
, Ψ(x) =

(
−χ̃>(x)σ2 , χ

†(x)
)
. (13)

(a) Show that up to a total derivative

LDirac ≡ Ψ(i 6∂ −m)Ψ = iχ†σ̄µ∂µχ + iχ̃†σ̄µ∂µχ̃ + mχ>σ2 χ̃ + mχ†σ2 χ̃
∗. (14)

Hint: σ2σ
µσ2 = (σ̄µ)∗ = (σ̄µ)>.

Note the χ ↔ χ̃ symmetry of the Lagrangian (14): In the last two terms, the σ2

matrix is antisymmetric but the fields are fermionic, hence χ>σ2χ̃ = −χ̃>σ>2χ =

+χ̃>σ2χ and likewise χ†σ2χ̃
∗ = +χ̃†σ2χ

∗.

(b) What happen to the LH spinor fields χ(x) and χ̃(x) and to the Lagrangian (14) under

an axial symmetry?

(c) Work out how parity P : (x, t)→ (−x,+t), charge conjugation C, and the combined

CP symmetry act on the Weyl spinor fields χ(x) and χ̃(x).

Now consider N left-handed Weyl spinor fields χj(x) with free Lagrangian

L =
∑
j

iχj†σ̄µ∂µχj + 1
2

∑
j,k

M jkχ>jσ2 χk + 1
2

∑
j,k

M∗jkχ
j†σ2 χ

k∗. (15)

The mass matrix M jk here must be symmetric, M jk = Mkj , but it may be complex

rather than real.

4



(d) Show that the Weyl equations for the χj fields lead to Klein–Gordon equations with

mass2 matrix M∗M = M †M , hence the physical fermion masses2 are eigenvalues of

the M †M .

Hints: σ2(σµ)>σ2 = σ̄µ; σµσ̄ν + σν σ̄µ = 2gµν .

Now consider the combined CP symmetry of the Weyl fermions. In the simplest case,

the symmetry acts similarly on all the spinors,

CP : χj(x, t) → = ±i× σ2χ
∗
j(−x,+t), same ± i ∀j. (16)

The overall factor here is ±i rather than ±1 because for fermions (CP)2 = −1. Note

that having the same overall factor ±i for all spinors is different from what we had for

the χ and the χ̃ in part (c).

(e) Show that the free Lagrangian (15) is invariant under this symmetry if and only if

the mass matrix M jk is real.

For free fermions, we may always make the mass matrix diagonal and real via some unitary

transform of fermions into each other, χi(x) → U j
i χj(x). Consequently, the free Weyl

fermions always have a CP symmetry, but its action on the original (un-transformed)

spinors becomes

CP : χj(x, t) →
∑
k

C k
j σ2χ

∗
k(−x,+t) (17)

for some unitary matrix C satisfying C>MC = −M∗.

? For extra challenge, show such C matrix exists for any complex symmetric mass

matrix M and check that (17) is indeed a symmetry of the free Lagrangian (15).

Note: for any symmetric complex matrix M there is a unitary matrix V such that

VMV > is real and diagonal.

However, for the interacting fermions, changing the basis and hence the CP action from

(16) to (17) may spoil the CP symmetry of the interactions. For example, consider the

weak interactions of the quarks. In terms of Weyl spinors, we have LH quark fields ui(x)

and di(x) and LH antiquark fields ũi(x) and d̃i(x) where i = 1, 2, 3 is the family index and
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the color and spinor indices are suppressed. The (ui, di) quark pairs are SU(2) doublets

while the LH antiquarks are singlets. Consequently, the gauge covariant Lagrangian for

the Weyl fermions

Lχ =
∑
allχ

χ† iσ̄µDµ χ + mass terms (18)

contains couplings of the charged vector fields W±µ of the SU(2)
?

to the LH quarks,

namely

Lweak
CC = −g2W

+
µ × ui†σ̄µdi − g2W

−
µ × di†σ̄µui (19)

(implicit sum over i); there are other interaction terms involving the neutral weak field

Z0
µ and the EM field Aµ, but for now let’s focus on the couplings of the charged weak

fields W±µ .

The mass matrix for all the Weyl fields is restricted by gauge symmetries and by M> = M

to have general form

M =



u ũ d d̃

u 0 mu 0 0

ũ m>u 0 0 0

d 0 0 0 md

d̃ 0 0 m>d 0

 (20)

for some general complex 3 × 3 matrices mu and md; physically, they are Dirac mass

matrices for the up-type and down-type quarks. Thus, in 3× 3 matrix form

Lmass = u>muσ2 ũ + d>mdσ2 d̃ + u†m∗uσ2 ũ
∗ + d†m∗dσ2 d̃

∗. (21)

We may always render both mu and md matrices real and diagonal by changing the bases

? In terms of the three W a
µ fields of the SU(2), two combination W±

µ = W 1
µ ± iW 2

µ have electric charges ±e.
The remaining W 3

µ field is electrically neutral; it mixes up with the U(1) gauge field Bµ to make the EM

field Aµ and the Z0
µ field. I’ll explain how this works later in class. For now, all we need are the W±

µ fields

and their couplings to the quarks.
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for each type of spinor fields,

ui →
∑
j

(Uu) ji uj , ũi
∑
j

→ (Ũu) ji ũj , di →
∑
j

(Ud)
j
i dj , d̃i

∑
j

→ (Ũd)
j
i d̃j ,

(22)

for some unitary 3 × 3 matrices Uu, Ũu, Ud, and Ũd. But in general we need Uu 6= Ud,

which spoils the (ui, di) pairing of the LH quarks into week doublets. Consequently, the

couplings of the LH quarks in the mass eigenbasis to the charged weak fields W±µ (x)

becomes

Lweak
CC = −g2W

+
µ × u†V σ̄µd − g2W

−
µ × d†V †σ̄µu

= −g2W
+
µ ×

∑
ij

V j
i ui†σ̄µdj − g2W

−
µ ×

∑
ij

V ∗ ij dj†σ̄µui
(23)

where V = U †uUd 6= 1 is the so-called Cabibbo–Kobayashi–Maskawa matrix. This matrix

is very important to the weak interaction phenomenology as it governs all kinds of flavor-

changing (or rather family-changing) processes such as decays of strange mesons via

s→ u+W− → u+ ū+d or → u+µ−+ ν̄µ. The CKM matrix also leads to CP violation;

in fact, all the currently observed CP-violating processes can be explained by the CKM

matrix being complex.

(f) Show that the weak interactions (23) of W±µ to the charged weak currents are CP-

symmetric when the CKM matrix has real matrix elements but a complex CKM

matrix breaks the CP symmetry.

FYI, the CP acts on the charged vector fields as

CP : W±0 (x, t) → −W∓0 (−x,+t), W±(x, t) → +W∓(−x,+t). (24)
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