Bogolyubov Transform

Given some kind of annihilation and creation operators $\hat{a}_{\mathbf{k}}$ and $\hat{a}_{\mathbf{k}}^{\dagger}$ which satisfy the bosonic commutation relations

$$
\begin{equation*}
\left[\hat{a}_{\mathbf{k}}, \hat{a}_{\mathbf{k}^{\prime}}\right]=\left[\hat{a}_{\mathbf{k}}^{\dagger}, \hat{a}_{\mathbf{k}^{\prime}}^{\dagger}\right]=0, \quad\left[\hat{a}_{\mathbf{k}}, \hat{a}_{\mathbf{k}^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \tag{1}
\end{equation*}
$$

we may define new operators $\hat{b}_{\mathbf{k}}$ and $\hat{b}_{\mathbf{k}}^{\dagger}$ according to

$$
\begin{equation*}
\hat{b}_{\mathbf{k}}=\cosh \left(t_{\mathbf{k}}\right) \hat{a}_{\mathbf{k}}+\sinh \left(t_{\mathbf{k}}\right) \hat{a}_{-\mathbf{k}}^{\dagger}, \quad \hat{b}_{\mathbf{k}}^{\dagger}=\cosh \left(t_{\mathbf{k}}\right) \hat{a}_{\mathbf{k}}^{\dagger}+\sinh \left(t_{\mathbf{k}}\right) \hat{a}_{-\mathbf{k}} \tag{2}
\end{equation*}
$$

for some arbitrary real parameters $t_{\mathbf{k}}=t_{-\mathbf{k}}$. These new operators $\hat{b}_{\mathbf{k}}$ and $\hat{b}_{\mathbf{k}}^{\dagger}$ satisfy the same the same bosonic commutation relations as the $\hat{a}_{\mathbf{k}}$ and the $\hat{a}_{\mathbf{k}}^{\dagger}$:

$$
\begin{equation*}
\left[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}^{\prime}}\right]=\left[\hat{b}_{\mathbf{k}}^{\dagger}, \hat{b}_{\mathbf{k}^{\prime}}^{\dagger}\right]=0, \quad\left[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \tag{3}
\end{equation*}
$$

The Bogolyubov transform - replacing the 'original' creation and annihilation operators $\hat{a}_{\mathbf{k}}^{\dagger}$ and $\hat{a}_{\mathbf{k}}$ with the 'transformed' operators $\hat{b}_{\mathbf{k}}^{\dagger}$ and $\hat{b}_{\mathbf{k}}$ — is useful for diagonalizing quadratic Hamiltonians of the form

$$
\begin{equation*}
\hat{H}=\sum_{\mathbf{k}} A_{\mathbf{k}} \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}+\frac{1}{2} \sum_{\mathbf{k}} B_{\mathbf{k}}\left(\hat{a}_{\mathbf{k}} \hat{a}_{-\mathbf{k}}+\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger}\right) \tag{4}
\end{equation*}
$$

where for all momenta $\mathbf{k}, A_{\mathbf{k}}=A_{-\mathbf{k}}, B_{\mathbf{k}}=B_{-\mathbf{k}}$, and $A_{\mathbf{k}}>\left|B_{\mathbf{k}}\right|$. Indeed, for a suitable choice of the $t_{\mathbf{k}}$ parameters,

$$
\begin{equation*}
\hat{H}=\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}+\text { const } \quad \text { where } \omega_{\mathbf{k}}=\sqrt{A_{\mathbf{k}}^{2}-B_{\mathbf{k}}^{2}} \tag{5}
\end{equation*}
$$

Moreover, $\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}-\hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}}=\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}-\hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}$ and consequently

$$
\begin{equation*}
\hat{\mathbf{P}} \equiv \sum_{\mathbf{k}} \mathbf{k} \times \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}=\sum_{\mathbf{k}} \mathbf{k} \times \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} \tag{6}
\end{equation*}
$$

Proof of (3):
Combining definitions (2) with commutation relations (1), we immediately calculate

$$
\begin{equation*}
\left[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}^{\prime}}\right]=\cosh \left(t_{\mathbf{k}}\right) \sinh \left(t_{\mathbf{k}^{\prime}}\right) \delta_{\mathbf{k},-\mathbf{k}^{\prime}}-\sinh \left(t_{\mathbf{k}}\right) \cosh \left(t_{\mathbf{k}^{\prime}}\right) \delta_{-\mathbf{k}, \mathbf{k}^{\prime}}=0 \tag{7}
\end{equation*}
$$

where the second equality follows from $t_{\mathbf{k}}=t_{\mathbf{k}^{\prime}}$ for $\mathbf{k}=-\mathbf{k}^{\prime}$. Likewise, $\left[\hat{b}_{\mathbf{k}}^{\dagger}, \hat{b}_{\mathbf{k}^{\prime}}^{\dagger}\right]=0$. Finally,

$$
\begin{align*}
{\left[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}^{\prime}}^{\dagger}\right] } & =\cosh \left(t_{\mathbf{k}}\right) \cosh \left(t_{\mathbf{k}^{\prime}}\right) \delta_{\mathbf{k}, \mathbf{k}^{\prime}}-\sinh \left(t_{-\mathbf{k}}\right) \sinh \left(t_{-\mathbf{k}^{\prime}}\right) \delta_{-\mathbf{k},-\mathbf{k}^{\prime}} \\
& =\delta_{\mathbf{k}, \mathbf{k}^{\prime}}\left(\cosh ^{2}\left(t_{\mathbf{k}}\right)-\sinh ^{2}\left(t_{\mathbf{k}}\right)=1\right) \tag{8}
\end{align*}
$$

In other words, the $\hat{b}_{\mathbf{k}}$ and $\hat{b}_{\mathbf{k}}^{\dagger}$ operators satisfy the same bosonic commutations relations

$$
\begin{equation*}
\left[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}^{\prime}}\right]=0, \quad\left[\hat{b}_{\mathbf{k}}^{\dagger}, \hat{b}_{\mathbf{k}^{\prime}}^{\dagger}\right]=0, \quad\left[\hat{b}_{\mathbf{k}}, \hat{b}_{\mathbf{k}^{\prime}}^{\dagger}\right]=\delta_{\mathbf{k}, \mathbf{k}^{\prime}} \tag{9}
\end{equation*}
$$

as the original $\hat{a}_{\mathbf{k}}$ and $\hat{a}_{\mathbf{k}}^{\dagger}$ operators. $\quad \mathcal{Q} \cdot \mathcal{E} . \mathcal{D}$.

Proof of (5):
Applying eqs. (2) twice, we immediately obtain

$$
\begin{equation*}
\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}=\cosh ^{2}\left(t_{\mathbf{k}}\right) \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}+\cosh \left(t_{\mathbf{k}}\right) \sinh \left(t_{\mathbf{k}}\right)\left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger}+\hat{a}_{-\mathbf{k}} \hat{a}_{\mathbf{k}}\right)+\sinh ^{2}\left(t_{\mathbf{k}}\right)\left(\hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}+1\right) . \tag{10}
\end{equation*}
$$

Next, we use $t_{-\mathbf{k}}=t_{\mathbf{k}}$ to combine

$$
\begin{align*}
\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}+\hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}} & =\left(\cosh ^{2}\left(t_{\mathbf{k}}\right)+\sinh ^{2}\left(t_{\mathbf{k}}\right)=\cosh \left(2 t_{\mathbf{k}}\right)\right) \times\left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}+\hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}\right) \\
& +\left(2 \cosh \left(t_{\mathbf{k}}\right) \sinh \left(t_{\mathbf{k}}\right)=\sinh \left(2 t_{\mathbf{k}}\right)\right) \times\left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger}+\hat{a}_{-\mathbf{k}} \hat{a}_{\mathbf{k}}\right)+\text { const. } \tag{11}
\end{align*}
$$

Finally, for $\omega_{-\mathbf{k}} \equiv \omega_{\mathbf{k}}$ we have

$$
\begin{align*}
\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} & =\frac{1}{2} \sum_{\mathbf{k}} \omega_{\mathbf{k}}\left(\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}+\hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}}\right) \\
& =\sum_{\mathbf{k}} \omega_{\mathbf{k}} \cosh \left(2 t_{\mathbf{k}}\right) \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}+\frac{1}{2} \sum_{\mathbf{k}} \omega_{\mathbf{k}} \sinh \left(2 t_{\mathbf{k}}\right)\left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}^{\dagger}+\hat{a}_{-\mathbf{k}} \hat{a}_{\mathbf{k}}\right)+\text { const. } \tag{12}
\end{align*}
$$

Consequently, the Hamiltonian (4)can be "diagonalized" in terms of the transformed creation
/ annihilation operators (2), provided we can find $\omega_{\mathbf{k}}=\omega_{-\mathbf{k}}$ and $t_{\mathbf{k}}=t_{-\mathbf{k}}$ such that

$$
\begin{equation*}
\omega_{\mathbf{k}} \cosh \left(2 t_{\mathbf{k}}\right)=A_{\mathbf{k}} \quad \text { and } \quad \omega_{\mathbf{k}} \sinh \left(2 t_{\mathbf{k}}\right)=B_{\mathbf{k}} . \tag{13}
\end{equation*}
$$

These equations are easy to solve, and the solution exists as long as $A_{\mathbf{k}}=A_{-\mathbf{k}}, B_{\mathbf{k}}=B_{-\mathbf{k}}$, and $A_{\mathbf{k}}>\left|B_{\mathbf{k}}\right|$, namely

$$
\begin{equation*}
t_{\mathbf{k}}=\frac{1}{2} \operatorname{artanh} \frac{B_{\mathbf{k}}}{A_{\mathbf{k}}} \quad \text { and } \quad \omega_{\mathbf{k}}=\sqrt{A_{\mathbf{k}}^{2}-B_{\mathbf{k}}^{2}} \tag{14}
\end{equation*}
$$

$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

Proof of (6):
Using eq. (10) and $t_{-\mathbf{k}}=t_{\mathbf{k}}$, we immediately see that

$$
\begin{equation*}
\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}-\hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}}=\left(\cosh ^{2}\left(t_{\mathbf{k}}\right)-\sinh ^{2}\left(t_{\mathbf{k}}\right)=1\right) \times\left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}-\hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}\right) . \tag{15}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\hat{\mathbf{P}} & =\sum_{\mathbf{k}} \mathbf{k} \times \hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}=\sum_{\mathbf{k}}(-\mathbf{k}) \times \hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}} \\
& =\frac{1}{2} \sum_{\mathbf{k}} \mathbf{k} \times\left(\hat{a}_{\mathbf{k}}^{\dagger} \hat{a}_{\mathbf{k}}-\hat{a}_{-\mathbf{k}}^{\dagger} \hat{a}_{-\mathbf{k}}\right) \\
& =\frac{1}{2} \sum_{\mathbf{k}} \mathbf{k} \times\left(\hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}-\hat{b}_{-\mathbf{k}}^{\dagger} \hat{b}_{-\mathbf{k}}\right) \tag{16}\\
& =\sum_{\mathbf{k}} \mathbf{k} \times \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} .
\end{align*}
$$

$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

