
Dirac Matrices and Lorentz Spinors

Background: In 3D, the spinor j = 1
2 representation of the Spin(3) rotation group is

constructed from the Pauli matrices σx, σy, and σk, which obey both commutation and

anticommutation relations

[σi, σj ] = 2iεijkσk and {σi, σj} = 2δij × 12×2 . (1)

Consequently, the spin matrices

S = − i
2
σσ× σσ = 1

2
σσ (2)

commute with each other as angular momenta, [Si, Sj ] = iεijkSk, so they represent the

generators of the rotation group. Moreover, under finite rotations R(φ,n) represented by

M(R) = exp
(
−iφn · S

)
, (3)

the spin matrices transform into each other as components of a 3–vector,

M−1(R)SiM(R) = RijSj . (4)

In this note, I shall generalize this construction to the Dirac spinor representation of the

Lorentz symmetry Spin(3, 1).

Dirac Matrices are 4 anti-commuting 4× 4 matrices γµ,

γµγν + γνγµ = 2gµν × 14×4 . (5)

The specific form of these matrices is not important — as long as they obey the anticom-

mutation relations (5) — and different books use different conventions. In my class I shall

follow the same convention as the Peskin & Schroeder textbook, namely the Weyl convention

where in 2× 2 block notations

γ0 =

(
0 12×2

12×2 0

)
, ~γ =

(
0 +~σ

−~σ 0

)
. (6)

Note that the γ0 matrix is hermitian while the γ1, γ2, and γ3 matrices are anti-hermitian.
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Lorentz spin matrices.

Given the Dirac matrices obeying the anticommutation relations (5), we may define the spin

matrices as

Sµν = −Sνµ def
= i

4 [γµ, γν ]. (7)

These matrices obey the same commutation relations as the generators Ĵµν = −Ĵνµ of the

continuous Lorentz group. Moreover, their commutation relations with the Dirac matrices

γµ are similar to the commutation relations of the Ĵµν with a Lorentz vector such as P̂µ.

Lemma:

[γλ, Sµν ] = igλµγν − igλνγµ. (8)

Proof: Combining the definition (7) of the spin matrices as commutators with the anti-

commutation relations (5), we have

γµγν = 1
2{γ

µ, γν} + 1
2 [γµ, γν ] = gµν × 14×4 − 2iSµν . (9)

Since the unit matrix commutes with everything, we have

[X,Sµν ] = i
2 [X, γµγν ] for any matrix X, (10)

and the commutator on the RHS may often be obtained from the Leibniz rules for the

commutators or anticommutators:

[A,BC] = [A,B]C + B[A,C] = {A,B}C − B{A,C},

{A,BC} = [A,B]C + B{A,C} = {A,B}C − B[A,C].
(11)

In particular,

[γλ, γµγν ] = {γλ, γµ}γν − γµ{γλ, γν} = 2gλµγν − 2gλνγµ (12)

and hence

[γλ, Sµν ] = i
2 [γλ, γµγν ] = igλµγν − igλνγµ. (13)

Quod erat demonstrandum.

2



Theorem: The Sµν matrices commute with each other like Lorentz generators,

[
Sκλ, Sµν

]
= igλµSκν − igκνSµλ − igλνSκµ + igκµSνλ. (14)

Proof: Again, we use the Leibniz rule and eq. (9):[
γκγλ, Sµν

]
= γκ

[
γλ, Sµν

]
+
[
γκ, Sµν

]
γλ

= γκ
(
igλµγν − igλνγµ

)
+
(
igκµγν − igκνγµ

)
γλ

= igλµγκγν − igκνγµγλ − igλνγκγµ + igκµγνγλ

= igλµ
(
gκν − 2iSκν

)
− igκν

(
gλµ + 2iSλµ

)
− igλν

(
gκµ − 2iSκµ

)
+ igκµ

(
gλν + 2iSλν

)
= 2gλµSκν − 2gκνSλµ − 2gλνSκµ + 2gκµSλν ,

(15)

and hence

[
Sκλ, Sµν

]
= i

2

[
γκγλ, Sµν

]
= igλµSκν − igκνSµλ − igλνSκµ + igκµSνλ. (16)

Quod erat demonstrandum.

In light of this theorem, the Sµν matrices represent the Lorentz generators Ĵµν in a

4-component spinor multiplet.

Finite Lorentz transforms:

Any continuous Lorentz transform — a rotation, or a boost, or a product of a boost and a

rotation — obtains from exponentiating an infinitesimal symmetry

X ′µ = Xµ + εµνXν (17)

where the infinitesimal εµν matrix is antisymmetric when both indices are raised (or both

lowered), εµν = −ενµ. Thus, the Lµν matrix of any continuous Lorentz transform is a matrix

exponential

Lµν = exp(Θ)µν ≡ δµν + Θµ
ν + 1

2Θµ
λΘλ

ν + 1
6Θµ

λΘλ
κΘκ

ν + · · · (18)

of some matrix Θ that becomes antisymmetric when both of its indices are raised or lowered,

Θµν = −Θνµ. Note however that in the matrix exponential (18), the first index of Θ is raised
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while the second index is lowered, so the antisymmetry condition becomes (gΘ)> = −(gΘ)

instead of Θ> = −Θ.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4× 4 matrix

MD(L) = exp
(
− i

2 ΘαβS
αβ
)
. (19)

The group law for such matrices

∀L1, L2 ∈ SO+(3, 1), MD(L2L1) = MD(L2)MD(L1) (20)

follows automatically from the Sµν satisfying the commutation relations (14) of the Lorentz

generators, so I am not going to prove it. Instead, let me show that when the Dirac matrices

γµ are sandwiched between the MD(L) and its inverse, they transform into each other as

components of a Lorentz 4–vector,

M−1D (L)γµMD(L) = Lµνγ
ν . (21)

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.

Proof: In light of the exponential form (19) of the matrix MD(L) representing a finite Lorentz

transform in the Dirac spinor multiplet, let’s use the multiple commutator formula (AKA

the Hadamard Lemma ): for any 2 matrices F and H,

exp(−F )H exp(+F ) = H +
[
H,F

]
+ 1

2

[[
H,F

]
, F
]

+ 1
6

[[[
H,F

]
, F
]
, F
]

+ · · · . (22)

In particular, let H = γµ while F = − i
2 ΘαβS

αβ so that MD(L) = exp(+F ) and M−1D (L) =

exp(−F ). Consequently,

M−1D (L)γµMD(L) = γµ +
[
γµ, F

]
+ 1

2

[[
γµ, F

]
, F
]

+ 1
6

[[[
γµ, F

]
, F
]
, F
]

+ · · · (23)

where all the multiple commutators turn out to be linear combinations of the Dirac matrices.
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Indeed, the single commutator here is

[
γµ, F

]
= − i

2Θαβ

[
γµ, Sαβ

]
= 1

2Θαβ

(
gµαγβ − gµβγα

)
= Θαβ g

µαγβ = Θµ
λγ

λ, (24)

while the multiple commutators follow by iterating this formula:

[[
γµ, F

]
, F
]

= Θµ
λ

[
γλ, F

]
= Θµ

λΘλ
νγ

ν ,
[[[
γµ, F

]
, F
]
, F
]

= Θµ
λΘλ

ρΘ
ρ
νγ

ν , . . . . (25)

Combining all these commutators as in eq. (23), we obtain

M−1D γµMD = γµ +
[
γµ, F

]
+ 1

2

[[
γµ, F

]
, F
]

+ 1
6

[[[
γµ, F

]
, F
]
, F
]

+ · · ·

= γµ + Θµ
νγ

ν + 1
2 Θµ

λΘλ
νγ

ν + 1
6 Θµ

λΘλ
ρΘ

ρ
νγ

ν + · · ·

=
(
δµν + Θµ

ν + 1
2Θµ

λΘλ
ν + 1

6Θµ
λΘλ

ρΘ
ρ
ν + · · ·

)
γν

≡ Lµνγ
ν .

(26)

Quod erat demonstrandum.

Dirac Equation

The Dirac spinor field Ψ(x) has 4 complex components Ψα(x) arranged in a column

vector

Ψ(x) =


Ψ1(x)

Ψ2(x)

Ψ3(x)

Ψ4(x)

 . (27)

Under continuous Lorentz symmetries x′µ = Lµνx
ν , the spinor field transforms as

Ψ′(x′) = MD(L)Ψ(x). (28)

The classical field equation for the free spinor field is the Dirac equation — a first-order

differential equation (
iγµ∂µ − m

)
Ψ(x) = 0. (29)

The Dirac equation implies the Klein–Gordon equation for each component Ψα(x). Indeed,
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if Ψ(x) obey the Dirac equation, then(
−iγν∂ν − m

)(
iγµ∂µ − m

)
Ψ(x) = 0 (30)

where the differential operator on the LHS is the Klein–Gordon m2 +∂2 times a unit matrix.

Indeed,(
−iγν∂ν −m

)(
iγµ∂µ −m

)
= m2 + γνγµ∂ν∂µ = m2 + 1

2{γ
µ, γν}∂ν∂µ = m2 + gµν∂ν∂µ .

(31)

The Dirac equation transforms covariantly under the Lorentz symmetries — its

LHS transforms exactly like the spinor field itself.

Proof: Note that since the Lorentz symmetries involve the xµ coordinates as well as the

spinor field components, the LHS of the Dirac equation becomes(
iγµ∂′µ − m

)
Ψ′(x′) (32)

where

∂′µ ≡
∂

∂x′µ
=

∂xν

∂x′µ
× ∂

∂xν
=
(
L−1

) ν
µ
× ∂ν . (33)

Consequently,

∂′µΨ′(x′) =
(
L−1

) ν
µ
×MD(L) ∂νΨ(x) (34)

and hence

γµ∂′µΨ′(x′) =
(
L−1

) ν
µ
× γµMD(L) ∂νΨ(x). (35)

But according to eq. (23),

M−1D (L)γµMD(L) = Lµνγ
ν =⇒ γµMD(L) = Lµν ×MD(L)γν

=⇒
(
L−1

) ν
µ
× γµMD(L) = MD(L)γν ,

(36)

so

γµ∂′µΨ′(x′) = MD(L)× γν∂νΨ(x). (37)

Altogether,(
iγµ∂µ − m

)
Ψ(x) −−−−→

Lorentz

(
iγµ∂′µ − m

)
Ψ′(x′) = MD(L)×

(
iγµ∂µ − m

)
Ψ(x), (38)

which proves the covariance of the Dirac equation. Quod erat demonstrandum.
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