Dirac Matrices and Lorentz Spinors

Background: In 3D, the spinor j = % representation of the Spin(3) rotation group is
constructed from the Pauli matrices 0®, ¢¥, and o, which obey both commutation and

anticommutation relations
(0, 07] = 2ie7%6k and {0,067} = 207 x 1,,,. (1)

Consequently, the spin matrices

; 1
S = —50x0 = 50 (2)
commute with each other as angular momenta, [S?, S7] = €78 Sk so they represent the

generators of the rotation group. Moreover, under finite rotations R(¢,n) represented by
M(R) = exp(—i¢n-8S), (3)
the spin matrices transform into each other as components of a 3—vector,
M~YR)S'M(R) = RYS. (4)

In this note, I shall generalize this construction to the Dirac spinor representation of the

Lorentz symmetry Spin(3,1).
Dirac Matrices are 4 anti-commuting 4 X 4 matrices v*,
Y+ A = 20" X 1 (5)

The specific form of these matrices is not important — as long as they obey the anticom-
mutation relations (5) — and different books use different conventions. In my class I shall
follow the same convention as the Peskin & Schroeder textbook, namely the Weyl convention

where in 2 x 2 block notations

0 —
ey 5 — . 6

Note that the 4?0 matrix is hermitian while the ', 42, and 72 matrices are anti-hermitian.



Lorentz spin matrices.
Given the Dirac matrices obeying the anticommutation relations (5), we may define the spin

matrices as

v vp def v
S = =SV = g (7)

These matrices obey the same commutation relations as the generators JH = — JUB of the
continuous Lorentz group. Moreover, their commutation relations with the Dirac matrices

~v# are similar to the commutation relations of the JM with a Lorentz vector such as P

Lemma:
A, 5] = gt — igMat, (8)

Proof: Combining the definition (7) of the spin matrices as commutators with the anti-

commutation relations (5), we have
= Y+ s = g X L — 208 (9)
Since the unit matrix commutes with everything, we have
(X, S*] = %[X, Y] for any matrix X, (10)

and the commutator on the RHS may often be obtained from the Leibniz rules for the

commutators or anticommutators:

[A,BC] = [A,B|C + B[A,C] = {A,B}C — B{A,C},
{A,BC}Y = [A,B|C + B{A,C} = {A,B}C — BIA,C)

In particular,
Y] = A = A = 20 — 2™ (12)
and hence
A, S = S AR = igMaY — ig (13)

Quod erat demonstrandum.



Theorem: The S* matrices commute with each other like Lorentz generators,
[SK)\7 S,ul/} _ ig)\usmj . Z-gm/Su)\ _ ig)\l/Smu + igke,usu)\‘ (14)

Proof: Again, we use the Leibniz rule and eq. (9):

[’YR’V)\7SW} VS [”y)‘,SW} i [fYn,S,uu] A
= 7" (ig"y" — igV ") + (ig™y” — ig™ )y
B VI N PN SR I N N N0
= Qg™ (g™ — 2iS™) — ig™ (g™ + 2iSM)
— ig™ (g™ — 2iS™) + ig"t (g™ + 2iSM)
_ 9gMIGRY _ ggrvgMi _ 9 g | goRugh.

(15)

and hence
[SH/\,S/W} _ % [VH,VA’S,LW} _ ng)\,usfw o Z-g/wS,uA - Z'gAl/SIi/L + Z'gNNSV/\. (16)

Quod erat demonstrandum.

In light of this theorem, the S*” matrices represent the Lorentz generators JH in a

4-component spinor multiplet.

Finite Lorentz transforms:
Any continuous Lorentz transform — a rotation, or a boost, or a product of a boost and a

rotation — obtains from exponentiating an infinitesimal symmetry
XF = XF 4 X, (17)

where the infinitesimal ¢*” matrix is antisymmetric when both indices are raised (or both
lowered), e"V = —e#. Thus, the L/, matrix of any continuous Lorentz transform is a matrix

exponential
L, = exp(©), = O + O + $6110), + $0460,0%, + .- (18)

of some matrix © that becomes antisymmetric when both of its indices are raised or lowered,

OM = —@"". Note however that in the matrix exponential (18), the first index of © is raised



while the second index is lowered, so the antisymmetry condition becomes (¢0)" = —(¢©)
instead of 7 = —0©.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4 x 4 matrix
Mp(L) = exp(—56,55). (19)

The group law for such matrices
VL1, Ly € SOT(3,1), Mp(LoL1) = Mp(La)Mp(L1) (20)

follows automatically from the S#¥ satisfying the commutation relations (14) of the Lorentz
generators, so [ am not going to prove it. Instead, let me show that when the Dirac matrices
~v# are sandwiched between the Mp(L) and its inverse, they transform into each other as

components of a Lorentz 4-vector,
My LW Mp(L) = LAA”. (21)

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.

Proof: In light of the exponential form (19) of the matrix Mp(L) representing a finite Lorentz

transform in the Dirac spinor multiplet, let’s use the multiple commutator formula (AKA

the [Hadamard Lemmal): for any 2 matrices F' and H,

exp(—F)Hexp(+F) = H + [H,F|] + $[[H,F],F| + ¢[[[H. F],F].,F] + ---. (22)

In particular, let H = 4# while F' = —% 0,557 so that M, (L) = exp(+F) and Mp,'(L) =
exp(—F'). Consequently,

My L)' Mp(L) = +* + [v. F] + S[[W F),F] + [[[W" F],F].F] + --- (23)

where all the multiple commutators turn out to be linear combinations of the Dirac matrices.


http://en.wikipedia.org/wiki/Baker-Campbell-Hausdorff_formula#The_Hadamard_lemma

Indeed, the single commutator here is

[V, F] = —5045 [7", 5] = 1045(g"*7" — ¢"P1%) = Oupg"*y’ = O, (24)
while the multiple commutators follow by iterating this formula:

[y F].F] = 4[y" F] = 040", [[["".F],F].F] = ©/,6°,0",.... (25)

Combining all these commutators as in eq. (23), we obtain

MMy = o+ [ F) 4 (D FLE] B0 FLFLE] ¢
= 7" + 0Ly + $0M00 Y + teheterny + -
= (o + 0 + 1640}, + 164,040, + )y
= LhAY.

(26)

Quod erat demonstrandum.

Dirac Equation

The Dirac spinor field ¥(z) has 4 complex components ¥, (x) arranged in a column

vector
\Ifl (ZL‘

S

2(z

)
U(z) = ; . (27)
)

S

3(x
Uy (x

Under continuous Lorentz symmetries 2/# = L%, 27, the spinor field transforms as

\Il'(a:’) = Mp(L)¥(x). (28)
The classical field equation for the free spinor field is the Dirac equation — a first-order
differential equation

(iv"0, — m)¥(z) = 0. (29)

The Dirac equation implies the Klein-Gordon equation for each component ¥, (x). Indeed,



if ¥(x) obey the Dirac equation, then
(=iv"0y — m) (iv"0p — m)¥(z) = 0 (30)

where the differential operator on the LHS is the Klein-Gordon m? 4 92 times a unit matrix.

Indeed,

(i7" 0y — m) ("0 —m) = m® + ¥'180,0, = m* + 3{7",7"}0,0, = m* + ¢"0,0,.

(31)
The Dirac equation transforms covariantly under the Lorentz symmetries — its
LHS transforms exactly like the spinor field itself.

Proof: Note that since the Lorentz symmetries involve the x* coordinates as well as the

spinor field components, the LHS of the Dirac equation becomes

(iv*a), — m)¥'(z) (32)
where
Ou = 8;?’# - gj'u % &iv = (L), xa, (33)
Consequently,
W' (') = (L7Y), x Mp(L)8,¥(x) (34)
and hence
POV (2!) = (L‘l): x Y Mp(L) 0,¥(x). (35)

But according to eq. (23),
Mp L Mp(L) = LhyY = A*Mp(L) = L x Mp(L)"
= (L"), x"Mp(L) = Mp(L)Y",
S0
Vo, (2') = Mp(L) x v"9,%(x). (37)

Altogether,

(iv"0, — m)¥(z) —— (i’y“@L — m)V'(z') = Mp(L) x (iv"0, — m)¥(z), (38)

Lorentz

which proves the covariance of the Dirac equation. Quod erat demonstrandum.



