Dirac Matrices and Lorentz Spinors

Background: In 3D, the spinor $j=\frac{1}{2}$ representation of the $\operatorname{Spin}(3)$ rotation group is constructed from the Pauli matrices σ^{x}, σ^{y}, and σ^{k}, which obey both commutation and anticommutation relations

$$
\begin{equation*}
\left[\sigma^{i}, \sigma^{j}\right]=2 i \epsilon^{i j k} \sigma^{k} \quad \text { and } \quad\left\{\sigma^{i}, \sigma^{j}\right\}=2 \delta^{i j} \times \mathbf{1}_{2 \times 2} \tag{1}
\end{equation*}
$$

Consequently, the spin matrices

$$
\begin{equation*}
\mathbf{S}=-\frac{i}{2} \sigma \times \sigma=\frac{1}{2} \sigma \tag{2}
\end{equation*}
$$

commute with each other as angular momenta, $\left[S^{i}, S^{j}\right]=i \epsilon^{i j k} S^{k}$, so they represent the generators of the rotation group. Moreover, under finite rotations $R(\phi, \mathbf{n})$ represented by

$$
\begin{equation*}
M(R)=\exp (-i \phi \mathbf{n} \cdot \mathbf{S}) \tag{3}
\end{equation*}
$$

the spin matrices transform into each other as components of a 3 -vector,

$$
\begin{equation*}
M^{-1}(R) S^{i} M(R)=R^{i j} S^{j} \tag{4}
\end{equation*}
$$

In this note, I shall generalize this construction to the Dirac spinor representation of the Lorentz symmetry $\operatorname{Spin}(3,1)$.

Dirac Matrices are 4 anti-commuting 4×4 matrices γ^{μ},

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \times \mathbf{1}_{4 \times 4} . \tag{5}
\end{equation*}
$$

The specific form of these matrices is not important - as long as they obey the anticommutation relations (5) - and different books use different conventions. In my class I shall follow the same convention as the Peskin \& Schroeder textbook, namely the Weyl convention where in 2×2 block notations

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbf{1}_{2 \times 2} \tag{6}\\
\mathbf{1}_{2 \times 2} & 0
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & +\vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right) .
$$

Note that the γ^{0} matrix is hermitian while the γ^{1}, γ^{2}, and γ^{3} matrices are anti-hermitian.

Lorentz spin matrices.

Given the Dirac matrices obeying the anticommutation relations (5), we may define the spin matrices as

$$
\begin{equation*}
S^{\mu \nu}=-S^{\nu \mu} \stackrel{\text { def }}{=} \frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right] . \tag{7}
\end{equation*}
$$

These matrices obey the same commutation relations as the generators $\hat{J}^{\mu \nu}=-\hat{J}^{\nu \mu}$ of the continuous Lorentz group. Moreover, their commutation relations with the Dirac matrices γ^{μ} are similar to the commutation relations of the $\hat{J}^{\mu \nu}$ with a Lorentz vector such as \hat{P}^{μ}.

Lemma:

$$
\begin{equation*}
\left[\gamma^{\lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} \gamma^{\nu}-i g^{\lambda \nu} \gamma^{\mu} . \tag{8}
\end{equation*}
$$

Proof: Combining the definition (7) of the spin matrices as commutators with the anticommutation relations (5), we have

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}=\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]=g^{\mu \nu} \times \mathbf{1}_{4 \times 4}-2 i S^{\mu \nu} . \tag{9}
\end{equation*}
$$

Since the unit matrix commutes with everything, we have

$$
\begin{equation*}
\left[X, S^{\mu \nu}\right]=\frac{i}{2}\left[X, \gamma^{\mu} \gamma^{\nu}\right] \quad \text { for any matrix } X, \tag{10}
\end{equation*}
$$

and the commutator on the RHS may often be obtained from the Leibniz rules for the commutators or anticommutators:

$$
\begin{align*}
{[A, B C] } & =[A, B] C+B[A, C]=\{A, B\} C-B\{A, C\}, \\
\{A, B C\} & =[A, B] C+B\{A, C\}=\{A, B\} C-B[A, C] . \tag{11}
\end{align*}
$$

In particular,

$$
\begin{equation*}
\left[\gamma^{\lambda}, \gamma^{\mu} \gamma^{\nu}\right]=\left\{\gamma^{\lambda}, \gamma^{\mu}\right\} \gamma^{\nu}-\gamma^{\mu}\left\{\gamma^{\lambda}, \gamma^{\nu}\right\}=2 g^{\lambda \mu} \gamma^{\nu}-2 g^{\lambda \nu} \gamma^{\mu} \tag{12}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left[\gamma^{\lambda}, S^{\mu \nu}\right]=\frac{i}{2}\left[\gamma^{\lambda}, \gamma^{\mu} \gamma^{\nu}\right]=i g^{\lambda \mu} \gamma^{\nu}-i g^{\lambda \nu} \gamma^{\mu} . \tag{13}
\end{equation*}
$$

Quod erat demonstrandum.

Theorem: The $S^{\mu \nu}$ matrices commute with each other like Lorentz generators,

$$
\begin{equation*}
\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} S^{\kappa \nu}-i g^{\kappa \nu} S^{\mu \lambda}-i g^{\lambda \nu} S^{\kappa \mu}+i g^{\kappa \mu} S^{\nu \lambda} . \tag{14}
\end{equation*}
$$

Proof: Again, we use the Leibniz rule and eq. (9):

$$
\begin{align*}
{\left[\gamma^{\kappa} \gamma^{\lambda}, S^{\mu \nu}\right]=} & \gamma^{\kappa}\left[\gamma^{\lambda}, S^{\mu \nu}\right]+\left[\gamma^{\kappa}, S^{\mu \nu}\right] \gamma^{\lambda} \\
= & \gamma^{\kappa}\left(i g^{\lambda \mu} \gamma^{\nu}-i g^{\lambda \nu} \gamma^{\mu}\right)+\left(i g^{\kappa \mu} \gamma^{\nu}-i g^{\kappa \nu} \gamma^{\mu}\right) \gamma^{\lambda} \\
= & i g^{\lambda \mu} \gamma^{\kappa} \gamma^{\nu}-i g^{\kappa \nu} \gamma^{\mu} \gamma^{\lambda}-i g^{\lambda \nu} \gamma^{\kappa} \gamma^{\mu}+i g^{\kappa \mu} \gamma^{\nu} \gamma^{\lambda} \\
= & i g^{\lambda \mu}\left(g^{\kappa \nu}-2 i S^{\kappa \nu}\right)-i g^{\kappa \nu}\left(g^{\lambda \mu}+2 i S^{\lambda \mu}\right) \tag{15}\\
& \quad-i g^{\lambda \nu}\left(g^{\kappa \mu}-2 i S^{\kappa \mu}\right)+i g^{\kappa \mu}\left(g^{\lambda \nu}+2 i S^{\lambda \nu}\right) \\
= & 2 g^{\lambda \mu} S^{\kappa \nu}-2 g^{\kappa \nu} S^{\lambda \mu}-2 g^{\lambda \nu} S^{\kappa \mu}+2 g^{\kappa \mu} S^{\lambda \nu},
\end{align*}
$$

and hence

$$
\begin{equation*}
\left[S^{\kappa \lambda}, S^{\mu \nu}\right]=\frac{i}{2}\left[\gamma^{\kappa} \gamma^{\lambda}, S^{\mu \nu}\right]=i g^{\lambda \mu} S^{\kappa \nu}-i g^{\kappa \nu} S^{\mu \lambda}-i g^{\lambda \nu} S^{\kappa \mu}+i g^{\kappa \mu} S^{\nu \lambda} . \tag{16}
\end{equation*}
$$

Quod erat demonstrandum.
In light of this theorem, the $S^{\mu \nu}$ matrices represent the Lorentz generators $\hat{J}^{\mu \nu}$ in a 4 -component spinor multiplet.

Finite Lorentz transforms:

Any continuous Lorentz transform - a rotation, or a boost, or a product of a boost and a rotation - obtains from exponentiating an infinitesimal symmetry

$$
\begin{equation*}
X^{\prime \mu}=X^{\mu}+\epsilon^{\mu \nu} X_{\nu} \tag{17}
\end{equation*}
$$

where the infinitesimal $\epsilon^{\mu \nu}$ matrix is antisymmetric when both indices are raised (or both lowered), $\epsilon^{\mu \nu}=-\epsilon^{\nu \mu}$. Thus, the L_{ν}^{μ} matrix of any continuous Lorentz transform is a matrix exponential

$$
\begin{equation*}
L_{\nu}^{\mu}=\exp (\Theta)^{\mu}{ }_{\nu} \equiv \delta_{\nu}^{\mu}+\Theta_{\nu}^{\mu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda}+\frac{1}{6} \Theta_{\lambda}^{\mu} \Theta_{\kappa}^{\lambda} \Theta_{\nu}^{\kappa}+\cdots \tag{18}
\end{equation*}
$$

of some matrix Θ that becomes antisymmetric when both of its indices are raised or lowered, $\Theta^{\mu \nu}=-\Theta^{\nu \mu}$. Note however that in the matrix exponential (18), the first index of Θ is raised
while the second index is lowered, so the antisymmetry condition becomes $(g \Theta)^{\top}=-(g \Theta)$ instead of $\Theta^{\top}=-\Theta$.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4×4 matrix

$$
\begin{equation*}
M_{D}(L)=\exp \left(-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}\right) \tag{19}
\end{equation*}
$$

The group law for such matrices

$$
\begin{equation*}
\forall L_{1}, L_{2} \in \mathrm{SO}^{+}(3,1), \quad M_{D}\left(L_{2} L_{1}\right)=M_{D}\left(L_{2}\right) M_{D}\left(L_{1}\right) \tag{20}
\end{equation*}
$$

follows automatically from the $S^{\mu \nu}$ satisfying the commutation relations (14) of the Lorentz generators, so I am not going to prove it. Instead, let me show that when the Dirac matrices γ^{μ} are sandwiched between the $M_{D}(L)$ and its inverse, they transform into each other as components of a Lorentz 4-vector,

$$
\begin{equation*}
M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \gamma^{\nu} \tag{21}
\end{equation*}
$$

This formula makes the Dirac equation transform covariantly under the Lorentz transforms. Proof: In light of the exponential form (19) of the matrix $M_{D}(L)$ representing a finite Lorentz transform in the Dirac spinor multiplet, let's use the multiple commutator formula (AKA the Hadamard Lemma): for any 2 matrices F and H,

$$
\begin{equation*}
\exp (-F) H \exp (+F)=H+[H, F]+\frac{1}{2}[[H, F], F]+\frac{1}{6}[[[H, F], F], F]+\cdots \tag{22}
\end{equation*}
$$

In particular, let $H=\gamma^{\mu}$ while $F=-\frac{i}{2} \Theta_{\alpha \beta} S^{\alpha \beta}$ so that $M_{D}(L)=\exp (+F)$ and $M_{D}^{-1}(L)=$ $\exp (-F)$. Consequently,

$$
\begin{equation*}
M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=\gamma^{\mu}+\left[\gamma^{\mu}, F\right]+\frac{1}{2}\left[\left[\gamma^{\mu}, F\right], F\right]+\frac{1}{6}\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right]+\cdots \tag{23}
\end{equation*}
$$

where all the multiple commutators turn out to be linear combinations of the Dirac matrices.

Indeed, the single commutator here is

$$
\begin{equation*}
\left[\gamma^{\mu}, F\right]=-\frac{i}{2} \Theta_{\alpha \beta}\left[\gamma^{\mu}, S^{\alpha \beta}\right]=\frac{1}{2} \Theta_{\alpha \beta}\left(g^{\mu \alpha} \gamma^{\beta}-g^{\mu \beta} \gamma^{\alpha}\right)=\Theta_{\alpha \beta} g^{\mu \alpha} \gamma^{\beta}=\Theta_{\lambda}^{\mu} \gamma^{\lambda} \tag{24}
\end{equation*}
$$

while the multiple commutators follow by iterating this formula:

$$
\begin{equation*}
\left[\left[\gamma^{\mu}, F\right], F\right]=\Theta_{\lambda}^{\mu}\left[\gamma^{\lambda}, F\right]=\Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda} \gamma^{\nu}, \quad\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right]=\Theta_{\lambda}^{\mu} \Theta_{\rho}^{\lambda} \Theta_{\nu}^{\rho} \gamma^{\nu}, \ldots \tag{25}
\end{equation*}
$$

Combining all these commutators as in eq. (23), we obtain

$$
\begin{align*}
M_{D}^{-1} \gamma^{\mu} M_{D} & =\gamma^{\mu}+\left[\gamma^{\mu}, F\right]+\frac{1}{2}\left[\left[\gamma^{\mu}, F\right], F\right]+\frac{1}{6}\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right]+\cdots \\
& =\gamma^{\mu}+\Theta^{\mu} \gamma^{\nu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda} \gamma^{\nu}+\frac{1}{6} \Theta_{\lambda}^{\mu} \Theta_{\rho}^{\lambda} \Theta^{\rho}{ }_{\nu}^{\nu}+\cdots \\
& =\left(\delta_{\nu}^{\mu}+\Theta_{\nu}^{\mu}+\frac{1}{2} \Theta_{\lambda}^{\mu} \Theta_{\nu}^{\lambda}+\frac{1}{6} \Theta_{\lambda}^{\mu} \Theta_{\rho}^{\lambda} \Theta^{\rho}{ }_{\nu}+\cdots\right) \gamma^{\nu} \tag{26}\\
& \equiv L_{\nu}^{\mu} \gamma^{\nu} .
\end{align*}
$$

Quod erat demonstrandum.

Dirac Equation

The Dirac spinor field $\Psi(x)$ has 4 complex components $\Psi_{\alpha}(x)$ arranged in a column vector

$$
\Psi(x)=\left(\begin{array}{c}
\Psi_{1}(x) \tag{27}\\
\Psi_{2}(x) \\
\Psi_{3}(x) \\
\Psi_{4}(x)
\end{array}\right)
$$

Under continuous Lorentz symmetries $x^{\prime \mu}=L_{\nu}^{\mu} x^{\nu}$, the spinor field transforms as

$$
\begin{equation*}
\Psi^{\prime}\left(x^{\prime}\right)=M_{D}(L) \Psi(x) \tag{28}
\end{equation*}
$$

The classical field equation for the free spinor field is the Dirac equation - a first-order differential equation

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0 \tag{29}
\end{equation*}
$$

The Dirac equation implies the Klein-Gordon equation for each component $\Psi_{\alpha}(x)$. Indeed,
if $\Psi(x)$ obey the Dirac equation, then

$$
\begin{equation*}
\left(-i \gamma^{\nu} \partial_{\nu}-m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x)=0 \tag{30}
\end{equation*}
$$

where the differential operator on the LHS is the Klein-Gordon $m^{2}+\partial^{2}$ times a unit matrix. Indeed,

$$
\begin{equation*}
\left(-i \gamma^{\nu} \partial_{\nu}-m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right)=m^{2}+\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}=m^{2}+\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \partial_{\nu} \partial_{\mu}=m^{2}+g^{\mu \nu} \partial_{\nu} \partial_{\mu} . \tag{31}
\end{equation*}
$$

The Dirac equation transforms covariantly under the Lorentz symmetries - its LHS transforms exactly like the spinor field itself.
Proof: Note that since the Lorentz symmetries involve the x^{μ} coordinates as well as the spinor field components, the LHS of the Dirac equation becomes

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \Psi^{\prime}\left(x^{\prime}\right) \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial_{\mu}^{\prime} \equiv \frac{\partial}{\partial x^{\mu}}=\frac{\partial x^{\nu}}{\partial x^{\mu}} \times \frac{\partial}{\partial x^{\nu}}=\left(L^{-1}\right)_{\mu}^{\nu} \times \partial_{\nu} . \tag{33}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\partial_{\mu}^{\prime} \Psi^{\prime}\left(x^{\prime}\right)=\left(L^{-1}\right)_{\mu}^{\nu} \times M_{D}(L) \partial_{\nu} \Psi(x) \tag{34}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\gamma^{\mu} \partial_{\mu}^{\prime} \Psi^{\prime}\left(x^{\prime}\right)=\left(L^{-1}\right)_{\mu}^{\nu} \times \gamma^{\mu} M_{D}(L) \partial_{\nu} \Psi(x) \tag{35}
\end{equation*}
$$

But according to eq. (23),

$$
\begin{align*}
M_{D}^{-1}(L) \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \gamma^{\nu} & \Longrightarrow \gamma^{\mu} M_{D}(L)=L_{\nu}^{\mu} \times M_{D}(L) \gamma^{\nu} \\
& \Longrightarrow\left(L^{-1}\right)_{\mu}^{\nu} \times \gamma^{\mu} M_{D}(L)=M_{D}(L) \gamma^{\nu} \tag{36}
\end{align*}
$$

so

$$
\begin{equation*}
\gamma^{\mu} \partial_{\mu}^{\prime} \Psi^{\prime}\left(x^{\prime}\right)=M_{D}(L) \times \gamma^{\nu} \partial_{\nu} \Psi(x) \tag{37}
\end{equation*}
$$

Altogether,

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x) \underset{\text { Lorentz }}{\longrightarrow}\left(i \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \Psi^{\prime}\left(x^{\prime}\right)=M_{D}(L) \times\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi(x) \tag{38}
\end{equation*}
$$

which proves the covariance of the Dirac equation. Quod erat demonstrandum.

