Glashow—Weinberg-Salam Theory

Glashow—Weinberg—Salam theory describing both weak and electromagnetic interactions
is the SU(2)w x U(1)y gauge theory spontaneously broken down to the U(1)gy. Out of 4
gauge fields W} (a =1,2,3) and B,,, one linear combination remains massless and gives rise
to the electromagnetism, while 3 other linear combinations become massive and give rise to

the weak interaction.

The key to the spontaneous breakdown of the electroweak gauge symmetry is the doublet
of complex fields H, (o = 1,2) called the Higgs fields. The SU(2)w x U(1)y quantum numbers
of these fields are (2, +3); that is, they form a doublet of the SU(2)y and have the U(1)y
hypercharge y = —I—%. Thus,
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where g is the SU(2)y gauge coupling and g; is the U(1)y gauge coupling.

The gauge fields W) and B, and the Higgs fields H, are the only bosonic fields of the
GSW theory. There are also 90 fermionic fields describing the quarks and the leptons, but we
shall study them later this semester. The net Lagrangian of the theory is
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where
B, = 0,B, — 0,B,,

W, = oW — o,Wi — ggeabcwjng,
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and D, H, D, HT are similar row/column vector forms of D, H, and D,H%, cf. eq. (1). The
N
scalar potential V' = % (HTH — %) has a local maximum rather than a minimum at H = 0,
while its minima form a spherical shell HTH = % in the scalar field space C?> = R*. All

such minima are related to each other by the gauge symmetry, so without loss of generality we



assume the Higgs fields have Vacuum Expectation Values (VEVs)
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Note that this expectation value breaks 3 out of 4 gauge symmetries of the theory, but one
combination of the U(1)y and an U(1) subgroup of the SU(2)y remains unbroken. Indeed,
the U(1)y symmetry exp(z’@(x)f/) acts on the Higgs fields as H(z) — exp(iy©(z))H(z) =
exp(4O(z)) H(z) since H has y = +1, while the SU(2) symmetry exp(i@(:c)fﬁ) — for the
same ©(z) — ants on the SU(2) double H as H(z) — exp(4O(z)73)H(z). Combining the

two symmetries, we have
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H(z) — exp(%@(x)) exp(%@(m)T?’)H(x) :< 0 1) H(x), (5)

which indeed leaves the vacuum expectation value (4) invariant. Thus, the U(1) subgroup of

the electroweak SU(2)y x U(1)y generated by the operator

O =7+ 13 (6)
remains unbroken. Physically, this subgroup is the U(1)g gauge symmetry of the electromag-

netism and Q is the electric charge operator (or rather electric charge in units of e).

We shall see in a moment that one linear combination of the four SU(2y x U(1)y gauge
fields corresponding to the Q generator remains massless while the other 3 combinations become
massive via the Higgs mechanism. The same mechanism also eliminates 3 scalar fields, which
becomes the longitudinal components of the 3 massive vector fields. Since the 2 complex Higgs
fields are equivalent to 4 real scalars, we end up with 4 — 3 = 1 physical scalar field h(z); its
quanta — called the physical Higgs particles — were experimentally discovered at the LHC
this year.

The simplest way to see how this works is to fix the unitary gauge for the spontaneously

broken symmetries. Note that any complex doublet H(z) can be SU(2)-rotated to

0
H(z) = Ulx)H(z) — % (;;(@) (1)

for a real h(x) > 0. This gauge transform would be singular for H(z) ~ 0 but it is nice and

smooth for H(z) in the vicinity of the vacuum expectation value (4), so we may use it to fix



the unitary gauge Hi(z) = 0, S(Ha(z)) = 0. Once we fix this gauge, we are left with a single
real scalar field ﬁ(x), which we may now shift by its VEV,

h(z) = v + h(x). (8)

In terms of this shifted field,
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so the scalar potential becomes
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with a positive mass? = A\v? > 0 for the physical Higgs field.

The mass terms for the vector fields emerge from the kinetic term D, H TDMH for the Higgs
doublets. Indeed, in the unitary gauge
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and hence
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The first term on the last line here is the kinetic term for the physical Higgs field while the

rest are the mass terms for the vector fields and also their interactions with the physical Higgs

field h(z). In particular, the vector mass terms obtain from truncating (v + h(z))? coefficients



to simply v2, thus
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In particular, the Wj and Wﬁ vector fields have masses
2 Q%UQ g2v

while the WS and B, vector fields have a 2 x 2 mass matrix
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This matrix has eigenvalues

2 2\,,2

and M5 = 0 (16)
— as promised, there is one massless vector field — while the mass eigenstates correspond to

vector fields

Zy(x) = COSQXWE(J:) — sinfd x B, (z), a7
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A, (z) = sinf x Wj’(x) + cost x B, (),

where

§ = arctan 2 (18)
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is the weak mizing angle or the Weinberg angle; experimentally, sin® 6 ~ 0.23.

Physically, the A,,(z) is the EM field whose quanta are massless photons, the Z,(z) is the
neutral weak field whose quanta are ZY particles of mass My ~ 91 GeV, and the Wﬁ2(x) —
or rather their linear combinations

1 e
W, (z) + ZWM(I)

Wi(z) = 7 and W, (z) =

V2

(19)

— are the charged weak fields (electric charges ¢ = 41) whose quanta are the W' and W~

particles of mass My =~ 80 GeV. The experimentally found mass ratio between the W+ and



79 particles gives us the value of the weak mixing angle:
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E T Zi T Irnid cos? = cos?0~0.77 = sin®0~0.23. (20)
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Now lets find the currents to which the vector fields Wﬂi, Z,, and A, couple and the
strengths of those couplings. Of particular importance is the EM coupling strength e since it
acts as the unit of the conventionally normalized electric charge, so we would like to relate it
to the original SU(2)w x U(1)y couplings g2 and g;. But the weak currents and couplings are

also important.

Our starting point is the SU(2)y x U(1)y symmetry currents JB{, ng, JEQ, JE?’ of the
fermionic fields. Without going into the details of these currents — we shall do that later this
semester — we can say that the original gauge fields By, (x) and W (z) couple to these currents

according to
Enet D) ‘Ccurrent = _QQW,} X J;’l - gQW/% X J;"Q - gQWE X Jg‘g - ng,u X J}% (21)

Now let’s relate the original gauge fields to the vector fields of definite masses and electric

charges. Inverting egs. (19) and (17), we obtain
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W? = —xW, — —x W/,
K \/5 K \/5 % (22)
WE = costl x Z,, + sinf x A,
B, = —sinf x Z, + cosf x Ay.
Plugging these formulae into eq. (21), we find
Lowmen. = =5 Wy x (Jfy = ilfz) = TZWEx (T + i)

— Zy X (gz cos 9J$3 — g1 sinf J{;) — A, X (92 Sin9J¥3 + 0 COS@J;) (23)
(Wi x T 4 W x ) = 52, x T — edu x Ty
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where
JTH = Jh = idh,, JH = JF 4 idhy, (24)
are the charged weak currents,
gxJy = gacosfJf, — gisinfJy (25)
is the neutral weak current (times the neutral weak coupling constant), and
ex Jhy = gasin@Jhy + gicosfJy (26)

is the (conventionally normalized) electric current. Note that on the right hand side of this
formula g1 cos @ = go sin 6 because of the way the weak mixing angle 6 is related to the gauge

couplings, tan @ = g1 /g2, cf. eq. (18). Consequently, we may identify
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and
Joy = Jhg + Jb. (28)

Note that this current does not depend on the gauge couplings or 6; instead, it’s the current
of the electric charge operator Q = T3 +Y which is the generator of the unbroken U(1)gm
gauge symmetry. Naturally, the EM field A, (x) — which is the gauge field of that U(1)gm —

should couple to precisely this symmetry current.

On the other hand, the Z, is the gauge field of a spontaneously broken symmetry, so the
specific combination of the symmetry currents that couples to the Z,, depends on the weak
mixing angle. Indeed, the coefficients of the two terms on the RHS of eq. (25) are quite different
and their ratio depends on g1/g2; specifically,
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Consequently, we may identify

N YT T S c 30
g 92+ 91 cos 6 sin 0 sin 6 cos (30)

and then the neutral weak current becomes

Jy = cos? 0 x Jhy — sin? 6 x Jy
= Jhy — sin®0 x (Jhs + JE) (31)

e a2 @
= JT3 sin HXJEM.

Note that the weak couplings g and g are larger than the EM coupling e. Consequently, at
high energies much larger than the masses of W and Z particles, the weak interactions are not
weak at all — they are stronger them the EM interactions. But at low energies, the $-decays
and other processes mediated by the virtual W= or Z° are suppressed by the very small factors
EQ/M‘%V of EQ/M% and it is those factors that make the weak interactions weak. I'll explain
how this works in November, when we study the Feynman diagrams. For the moment, let me

simply outline the effective Fermi theory for the low-energy weak interactions.

The low-energy processes do not produce any real W+ or Z° particles, but they do involve
the weak currents J*# and J%, which in turn give rise to the small Wui(a:) and Z,(z) fields.

To see how this works at the classical level, consider the electroweak Lagrangian
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= 14w+ SF 22"~ G2, 32

+ terms involving A, and h and their interactions with VVMi and Z,,.

To the leading order of perturbation theory we may neglect the non-abelian terms here as well
as interactions of the vector fields with the physical Higgs field h. Moreover, at low energy-
momenta k* < My, Mz, the kinetic terms for the VVHi and Z, fields are much smaller than

the respective mass terms. Consequently, we may approximate
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The field equations stemming from this approximate Lagrangian are simply
M%,xWi“zg—szi“ and M% x 7' ~ §x Jb. (34)

Solving these equations and plugging the solutions back into the Lagrangian (33), we obtain

the effective current-current Lagrangian for the low-energy weak interactions,
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weak g - g
Eef%sactive = _2]\42%/ X Ju JH — QM% X JZ,ng : (35>

This effective Lagrangian is called the Fermi Lagrangian — and the corresponding effective

theory of weak interactions is called the Fermi Theory — since Enrico Fermi wrote it down

back in 1933. Or rather, he wrote down
L = —2V2G x J, J™ (36)

since only the charged-current weak interactions we known in those days, and the weak coupling
G was an input parameter to be determined experimentally. Today G is called the Fermi

constant and we know how to relate it to the vacuum expectation value of the Higgs field:
1 g3 1 1
- 5B (37)
42 M, V2 v
The neutral-coupling weak interactions have a separate Fermi-like constant, but in the

GWS electroweak theory it has exactly the same value as the Fermi constant for the charged-

current weak interactions:

Ez"ﬁ?eaéive = —2V2G (J;Jﬂ‘ + px JZHJg) for p = 1. (38)
Indeed,
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Experimentally, p = 1 with high precision, and it is a strong evidence for the GWS theory.



