Quantization of Non-Abelian Gauge Theories

For simplicity, let’s start with the pure Yang—Mills theory with some simple gauge group
G. Classically, the only fields of the theory are the gauge fields AZ(ZL‘) in the adjoint multiplet
of G. The Euclidean Lagrangian is

Lr = 3 () (1)

a

where

F, = 0,A% — 0,A% — gf“bCAZAf, (2)

are the non-abelian tension fields, ¢ is the gauge coupling constant, and f%¢ are the structure

constants of the Lie algebra of G. That is, the generators T of G obey [T, T] = i f®cTe,

In perturbation theory we decompose the Lagrangian into quadratic, cubic, and quartic

terms,
L = Ly + gLs + ¢°Ly,
Ly = 3(0u48 - 0,45)" = 1(9,42)" — $(0,4%)°,
Ly = —5(0u4y — 0, A7) x fALAY,
Lo = §(FaAp)”

In Feynman rules, the propagators should come from the quadratic part Lo while the vertices
should come from the cubic and quartic parts. But the quadratic part here looks like |G|
species of photons and it suffers from exactly the same quantization problem as the QED:
the Euclidean path integral over the free Ajj(z) fields diverges for for generic sources J(x)

and does not give us a valid propagator.

Just as in QED, the solution to this problem is to fix a gauge. That is, for every config-
uration Aj(x) of the gauge fields, we replace it with a gauge-equivalent conﬁgurationflﬁ(x)
which obeys some simple constraint at every point x, for example the Landau gauge con-

straint

@LJZXZ(:U) = 0 Ve, Va. (4)



Consequently, for the path integral we have

219) = [Pl exp(-s.(4.)
— /D[AZ(LL’)] eXp(—Se[A, J]) X /D[Aa(a:)] A[@HAZ(J:)] X Det[F P] (5)
_ / DIAY(z) /D[AZ(:U)] exp(—SelA, J]) x A[8,A%(x)] x Det[FP]

where AZ(x) obtains from the Af(z) via the gauge transform parametrized by the A*(z) (T'll

write an explicit formula in a moment), and Det[F P] is the Faddeev—Popov determinant,

5(0,A%)
SADb

Det[FP] = Det (6)

Since the net YM action is gauge invariant, on the last line of eq. (5) we may replace the S[A]

with the S[A]. Likewise, the measure of the path integral should also be gauge invariant, so

we may replace the D[A}] with the D[AZ(x)], thus

210 = / D[AY(2)] /D[Ag(x)] exp(—S.[A, J]) x A9, A% (x)] x Det[FP)
_ / DIAY(2)] Z[J] (7)

where  Z[J] = /D[AZ(x)] exp(—Se[A, J]) x A3, A%z)] x Det[FP). (8)

But in the last integral for the Z nothing depends on the gauge transform A%(z): the
integrand depends only on the gauge field AZ(x) constrained to obey 8MAZ(ZL‘) = 0, and we
integrate over all such fields. Therefore, the outer integral over the A%(x) is redundant, it
does nothing but introduce an overall constant factor we do not care about, so we may just
as well dispense with it. In other words, we simply re-identify the 7 as the partition function

of the Yang—Mills theory.

All this seem to work exactly as in QED, but the devil is in the details: the non-abelian
gauge transforms are more complicated, which makes the Faddeev—Popov determinant de-

pend on the vector fields A}. Indeed, the non-abelian gauge transforms do not merely shift



the Ay, by 9,A(z) but also rotate the components Af, into each other. For the infinitesimal

gauge transform parameters A%(z),
SAG(x) = —0,A%(x) — gf*"A(x)AG(x) = —DuA(x), (9)

while the finite gauge transforms are best written in matrix notations for the symmetry
group G: The transform is parametrized by the z—dependent symmetry matrix U(z) =

exp(igA®(x)T*), while the matrix-valued vector field A, (z) = gAj(z)T* transforms as
Ay (2) — Ulz) x Ay(z) x U N z) + i9,U(z) x U (). (10)

Fortunately, the Faddeev—Popov determinant does not depend on the finite gauge transform
that gets us from some original Aj(z) to the AZ(x) that obey the Landau gauge constraint.
All we need are the infinitesimal variations of that gauge transform, and we can build them
in two stages:

first, A — 5 A®
' H(ZL‘) finite H

second A () — Al(z) = Al(z) — DuA(x).

(x), which obeys 8NAZ(:E) =0,
(11)

The Faddeev—Popov determinant depends only on the second stage here, thus

0(0,A%)

= Det[(—9,Dy)%] (12)

Note: the differential operator here is a product of an ordinary derivative d,, and a covariant
derivative D,, (in the adjoint multiplet of the gauge group), and the covariant derivative

makes the FP determinant A-dependent.

To may re-implement the Faddeev—Popov determinant (12) using a fermionic path inte-
gral. Indeed, the determinant of any matrix O;; of differential operators obtains from the

fermionic path integral

[P o) exo (— /d%e@i@jwj) — Det[0,). (13)

The number of 1; and the Ej fields here depends on the matrix size of the O;;, and their
indices should be of the same type. In particular, for the Faddeev—Popov determinant (12)



the fermionic fields should carry the adjoint indices of the gauge symmetry, thus

Det[FP] = /D[E“(az)] /D[ca(az)] exp <+ /d%e caOuDyc”* = — /d4x€8HEaDuca). (14)

On the other hand, since the operator —0,,D,, does not have any Dirac indices, the fermionic
fields ¢®(x) and ¢*(z) — called the Faddeev—Popov ghost fields — are spinless scalar fields
despite their fermionic statistics! This violates the spin-statistics theorem, so quanta of the

ghost fields are not physical particles, and their Hilbert space has negative norm.

In terms of the ghosts fields, the partition function (8) for the Yang—Mills theory becomes

7 = [Pz 80,450 [Pl o) /D[c%x)b
Cexp (— /d4xe (hFa Fe, — JpAs + aucaDuc‘I)) .

4+ pvt pv
In other words, the quantum theory has both vector and ghost fields, its effective Euclidean
Lagrangian is

L = 1F o, + 0ucaDyuc?, (16)

and the vector fields are constrained by the Landau gauge condition 8NAZ(:E) = (0. Thanks

to this condition, the theory has well-defined vector propagators:

b ab kK,
SCTTOOTO00 — 2 (0 — 22°) (Buctidean)

—i§? Kok ‘ ‘
= 210 <9uv - k,gﬂiJrl;O) (Minkowski).

(17)

Sometimes it is more convenient to use the Feynman gauge or a more general ¢ gauge.
To change the gauge, we proceed similar to QED. First, we modify the right hand side of

the Landau gauge constraint and demand 9, A}, (z) = w*(x) for a fixed w®(x). This change



does not affect the Faddeev—Popov determinant, so the partition function becomes

2100 = [[PLs@) 80, 450) - (o) [Dlea) /D[c%xb
Cexp <— /d%e (4 Fa, — JpAs + aﬂeapuca)) .

(18)

4+ pvt py

By gauge invariance of the original theory, this partition function does not depend on w®(z),
so we may just as well average it over the w configurations with some Gaussian weight. In
other words, we add to the theory a non-propagating auxiliary field — or rather an adjoint

multiplet of auxiliary fields w®(x) with quadratic Lagrangian

1 a, a
L, = iw w®, (19)

Consequently, the partition function becomes

210 = /D[wa(x)] exp <;—; /d4xew“w“> % 21w

~ [Jrrn [[riaze) a5 - @) [foi@) [[or) S
Cexp (— /d4a:e (iFgVng — JGAS 4 0uCaDpc® + iw%ﬂ)) .

28

But in the last integral, we may use the A[Af,(z) —w®(x)] functional to eliminate the auxiliary

fields w® instead of constraining the vector fields, thus

A /D[AZ(x)] /D[cﬂ(x)] /D[ca(x)] exp <— /d4xe(£net—JﬁAZ)) (21)

where the net Euclidean Lagrangian is now

1 2
1 _
Luet = gyt + 2 (0uA)" + OuCaDpc (22)
and the vector fields are no longer constrained. Instead, we have the gauge-fixing term

<8HAZ)2 /2¢ in the Lagrangian. Adding this term to the quadratic part of the original YM



Lagrangian, we arrive at the {—gauge propagators for the vector fields,

a b &® kyk ‘
SCTTOOT00 = g (e + (6~ 0 252) (Encidesn)
—igab Kk (23)

= k2140 <9W + (£—1) x 12 —i—iO) (Minkowski).

The Feynman gauge is the special case of this gauge for £ = 1.



