
Quantization of Non-Abelian Gauge Theories

For simplicity, let’s start with the pure Yang–Mills theory with some simple gauge group

G. Classically, the only fields of the theory are the gauge fields Aa
µ(x) in the adjoint multiplet

of G. The Euclidean Lagrangian is

LE = +
1

4

∑

a

(

F a
µν

)2
(1)

where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν (2)

are the non-abelian tension fields, g is the gauge coupling constant, and fabc are the structure

constants of the Lie algebra of G. That is, the generators T a of G obey [T a, T b] = ifabcT c.

In perturbation theory we decompose the Lagrangian into quadratic, cubic, and quartic

terms,

L = L2 + gL3 + g2L4 ,

L2 = 1

4

(

∂µA
a
ν − ∂νA

a
µ

)2
= 1

2

(

∂µA
a
ν

)2
− 1

2

(

∂µA
a
µ

)2
,

L3 = −1

2

(

∂µA
a
ν − ∂νA

a
µ

)

× fabcAb
µA

c
ν ,

L4 = 1

4

(

fabcAb
µA

c
ν

)2
.

(3)

In Feynman rules, the propagators should come from the quadratic part L2 while the vertices

should come from the cubic and quartic parts. But the quadratic part here looks like |G|

species of photons and it suffers from exactly the same quantization problem as the QED:

the Euclidean path integral over the free Aa
µ(x) fields diverges for for generic sources Ja

µ(x)

and does not give us a valid propagator.

Just as in QED, the solution to this problem is to fix a gauge. That is, for every config-

uration Aa
µ(x) of the gauge fields, we replace it with a gauge-equivalent configurationÃa

µ(x)

which obeys some simple constraint at every point x, for example the Landau gauge con-

straint

∂µÃ
a
µ(x) ≡ 0 ∀x, ∀a. (4)
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Consequently, for the path integral we have

Z[J ] =

∫∫∫

D[Aa
µ(x)] exp

(

−Se[A, J ]
)

→

∫∫∫

D[Aa
µ(x)] exp

(

−Se[A, J ]
)

×

∫∫∫

D[Λa(x)]∆[∂µÃ
a
µ(x)]× Det[FP ]

=

∫∫∫

D[Λa(x)]

∫∫∫

D[Aa
µ(x)] exp

(

−Se[A, J ]
)

×∆[∂µÃ
a
µ(x)]× Det[FP ]

(5)

where Ãa
µ(x) obtains from the Aa

µ(x) via the gauge transform parametrized by the Λa(x) (I’ll

write an explicit formula in a moment), and Det[FP ] is the Faddeev–Popov determinant,

Det[FP ] = Det

[

δ(∂µÃ
a
µ)

δΛb

]

. (6)

Since the net YM action is gauge invariant, on the last line of eq. (5) we may replace the S[A]

with the S[Ã]. Likewise, the measure of the path integral should also be gauge invariant, so

we may replace the D[Aa
µ] with the D[Ãa

µ(x)], thus

Z[J ] =

∫∫∫

D[Λa(x)]

∫∫∫

D[Ãa
µ(x)] exp

(

−Se[Ã, J ]
)

×∆[∂µÃ
a
µ(x)]× Det[FP ]

=

∫∫∫

D[Λa(x)] Ẑ[J ] (7)

where Ẑ[J ] =

∫∫∫

D[Ãa
µ(x)] exp

(

−Se[Ã, J ]
)

×∆[∂µÃ
a
µ(x)]×Det[FP ]. (8)

But in the last integral for the Ẑ nothing depends on the gauge transform Λa(x): the

integrand depends only on the gauge field Ãa
µ(x) constrained to obey ∂µÃ

a
µ(x) ≡ 0, and we

integrate over all such fields. Therefore, the outer integral over the Λa(x) is redundant, it

does nothing but introduce an overall constant factor we do not care about, so we may just

as well dispense with it. In other words, we simply re-identify the Ẑ as the partition function

of the Yang–Mills theory.

All this seem to work exactly as in QED, but the devil is in the details: the non-abelian

gauge transforms are more complicated, which makes the Faddeev–Popov determinant de-

pend on the vector fields Aa
µ. Indeed, the non-abelian gauge transforms do not merely shift
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the Aµ by ∂µΛ(x) but also rotate the components Aa
µ into each other. For the infinitesimal

gauge transform parameters Λa(x),

δAa
µ(x) = −∂µΛ

a(x) − gfabcΛb(x)Ac
µ(x) = −DµΛ

a(x), (9)

while the finite gauge transforms are best written in matrix notations for the symmetry

group G: The transform is parametrized by the x–dependent symmetry matrix U(x) =

exp(igΛa(x)T a), while the matrix-valued vector field Aµ(x) = gAa
µ(x)T

a transforms as

Aµ(x) −→ U(x)×Aµ(x)× U−1(x) + i∂µU(x)× U−1(x). (10)

Fortunately, the Faddeev–Popov determinant does not depend on the finite gauge transform

that gets us from some original Aa
µ(x) to the Ãa

µ(x) that obey the Landau gauge constraint.

All we need are the infinitesimal variations of that gauge transform, and we can build them

in two stages:

first, Aa
µ(x) −−−→

finite

Âa
µ(x) , which obeys ∂µÂ

a
µ(x) ≡ 0,

second Âa
µ(x) −−→

infi

Ãa
µ(x) = Âa

µ(x) − DµΛ
a(x).

(11)

The Faddeev–Popov determinant depends only on the second stage here, thus

Det[FP ] = Det

[

δ(∂µÃ
a
µ)

δΛb

]

= Det
[

(−∂µDµ)
a
b

]

(12)

Note: the differential operator here is a product of an ordinary derivative ∂µ and a covariant

derivative Dµ (in the adjoint multiplet of the gauge group), and the covariant derivative

makes the FP determinant A-dependent.

To may re-implement the Faddeev–Popov determinant (12) using a fermionic path inte-

gral. Indeed, the determinant of any matrix Oij of differential operators obtains from the

fermionic path integral

∫∫∫

D[ψi(x)]

∫∫∫

D[ψj(x)] exp

(

−

∫

d4xe ψiOijψj

)

= Det[Oij ]. (13)

The number of ψi and the ψj fields here depends on the matrix size of the Oij , and their

indices should be of the same type. In particular, for the Faddeev–Popov determinant (12)
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the fermionic fields should carry the adjoint indices of the gauge symmetry, thus

Det[FP ] =

∫∫∫

D[c̄a(x)]

∫∫∫

D[ca(x)] exp

(

+

∫

d4xe c̄a∂µDµc
a = −

∫

d4xe ∂µc̄aDµc
a

)

. (14)

On the other hand, since the operator −∂µDµ does not have any Dirac indices, the fermionic

fields ca(x) and c̄a(x) — called the Faddeev–Popov ghost fields — are spinless scalar fields

despite their fermionic statistics! This violates the spin-statistics theorem, so quanta of the

ghost fields are not physical particles, and their Hilbert space has negative norm.

In terms of the ghosts fields, the partition function (8) for the Yang–Mills theory becomes

Z =

∫∫∫

D[Aa
µ(x)]∆[∂µA

a
µ(x)]

∫∫∫

D[c̄a(x)]

∫∫∫

D[ca(x)]

exp

(

−

∫

d4xe

(

1

4
F a
µνF

a
µν − Ja

µA
a
µ + ∂µc̄aDµc

a
)

)

.

(15)

In other words, the quantum theory has both vector and ghost fields, its effective Euclidean

Lagrangian is

Leff = 1

4
F a
µνF

a
µν + ∂µc̄aDµc

a, (16)

and the vector fields are constrained by the Landau gauge condition ∂µA
a
µ(x) ≡ 0. Thanks

to this condition, the theory has well-defined vector propagators:

a

µ

b

ν
=

δab

k2

(

δµν −
kµkν
k2

)

(Euclidean)

=
−iδab

k2 + i0

(

gµν −
kµkν
k2 + i0

)

(Minkowski).

(17)

Sometimes it is more convenient to use the Feynman gauge or a more general ξ gauge.

To change the gauge, we proceed similar to QED. First, we modify the right hand side of

the Landau gauge constraint and demand ∂µA
a
µ(x) ≡ ωa(x) for a fixed ωa(x). This change

4



does not affect the Faddeev–Popov determinant, so the partition function becomes

Z[J, ω] =

∫∫∫

D[Aa
µ(x)]∆[∂µA

a
µ(x)− ωa(x)]

∫∫∫

D[c̄a(x)]

∫∫∫

D[ca(x)]

exp

(

−

∫

d4xe

(

1

4
F a
µνF

a
µν − Ja

µA
a
µ + ∂µc̄aDµc

a
)

)

.

(18)

By gauge invariance of the original theory, this partition function does not depend on ωa(x),

so we may just as well average it over the ω configurations with some Gaussian weight. In

other words, we add to the theory a non-propagating auxiliary field — or rather an adjoint

multiplet of auxiliary fields ωa(x) with quadratic Lagrangian

Lω =
1

2ξ
ωaωa , (19)

Consequently, the partition function becomes

Z[J ] =

∫∫∫

D[ωa(x)] exp

(

−1

2ξ

∫

d4xe ω
aωa

)

× Z[J, ω]

=

∫∫∫

D[ωa(x)]

∫∫∫

D[Aa
µ(x)]∆[∂µA

a
µ(x)− ωa(x)]

∫∫∫

D[c̄a(x)]

∫∫∫

D[ca(x)]

exp

(

−

∫

d4xe

(

1

4
F a
µνF

a
µν − Ja

µA
a
µ + ∂µc̄aDµc

a +
1

2ξ
ωaωa

))

.

(20)

But in the last integral, we may use the ∆[Aa
µ(x)−ω

a(x)] functional to eliminate the auxiliary

fields ωa instead of constraining the vector fields, thus

Z[J ] =

∫∫∫

D[Aa
µ(x)]

∫∫∫

D[c̄a(x)]

∫∫∫

D[ca(x)] exp

(

−

∫

d4xe
(

Lnet − Ja
µA

a
µ

)

)

(21)

where the net Euclidean Lagrangian is now

Lnet = 1

4
F a
µνF

a
µν +

1

2ξ

(

∂µA
a
µ

)2
+ ∂µc̄aDµc

a (22)

and the vector fields are no longer constrained. Instead, we have the gauge-fixing term

(∂µA
a
µ)

2/2ξ in the Lagrangian. Adding this term to the quadratic part of the original YM

5



Lagrangian, we arrive at the ξ–gauge propagators for the vector fields,

a

µ

b

ν
=

δab

k2

(

δµν + (ξ − 1)×
kµkν
k2

)

(Euclidean)

=
−iδab

k2 + i0

(

gµν + (ξ − 1)×
kµkν
k2 + i0

)

(Minkowski).

(23)

The Feynman gauge is the special case of this gauge for ξ = 1.
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