ANNIHILATION

In these notes I explain the eTe™ — 7+ annihilation process. At the tree level of QED,

there are two diagrams related by interchanging of the two photons in the final state:
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The net amplitude due to these diagrams is
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MY = B(e")(ien) ——(ier")ule),

where ¢ = p_ — k; = ko — py and ¢ = p— — ko = k1 — p4. Note the opposite orders of the
~v# and ~¥ vertices in the M; and the My amplitudes since the two photons attach to the
electron line in opposite order. Also note the bosonic symmetry between the two photons in

the final state: exchanging the photons is equivalent to exchanging the two diagrams, thus

MY (k1 kasp-py) = MMk < kasp—,py) = My = Mg(kr < k). (3)
For calculation purposes, it is convenient to eliminate the matrix denominators from the
amplitudes M; and My using
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Ward Identities

Before we go any further, lets check the Ward identities for the annihilation amplitude:
For the first photon we should have k1, M*” = 0, and for the second photon ko, M* = 0.
Let’s start with the first photon and the first diagram. Multiplying the second factor in the
first eq. (5) by k1, we have

0y’ (d +m)yHu x ki = 0y (-~ F +m) fu
= /(- +m) fru  (because iJ = ki =0)
= 7" (2(1777%‘1) - k- - m))u (6)
= 2(p_k1) x 19¥u  {(because (J— — m)u = 0))
= (m? —1t) x 1y"u
and consequently
MY Xk = +e? x 07V u. (7)
Note the non-zero right hand side — the first diagram does not obey the Ward identity all by
itself. As for the second diagram, we have
Y+ m)V'u x ki = k(G- P +m)y e
— Ofi(— fr +m)ru (because iy — kP = 0)
= o(=2psk1) + (s +m) o )77 (®)
= —2(p1+k1) x v9"u  {(because v(Y+ +m) = 0)
= —(m? —u) x 0 u
and consequently

MEY Xk, = —e* x 07 u. 9)

Again we have a non-zero result — the second diagram also does not obey the Ward identity

all by itself. However, the right hand sides of eqgs. (7) and (9) cancel each other, so the net



amplitude does obey the Ward identity,

MM x klu = Miw X klu + ng X klu = 0. (10)

net

This is an example of a general rule: The Ward identities does not work diagram by diagram,
but only for sums of all diagrams related by permutations of photonic vertices on the same
fermionic line — or for bigger sums, such as complete amplitudes to N-loop order for N =

0,1,2,...

The Ward identity M* x ko, = 0 for the second photon works similarly to the first. In
fact, thanks to the Bose symmetry (3) between the two photons, the two Ward identities are

equivalent to each other,
MM = MV“(/{J — /{ZQ) — (M‘uy X klu =0 +<— MM"x koy = O). (11)
Thus, for the second photon

MY X kg = —Axiytu # 0, MY xkay, = +ex0y"u # 0, but MM xky, = 0.
(12)

Summing over the Spins and Polarizations

In a typical annihilation experiment, the initial electrons and positrons come from un-
polarized beams where both spin states are equally likely. Likewise, the photon detector is
sensitive to the outgoing photons’ momenta but it does not care about their polarization
states. To calculate the annihilation cross-section for such un-polarized process, we should
sum the |[M|? over the final photon polarizations and average over the spins of the initial

fermions.

Summing the |M|? over the photon polarizations is explained in detail in iy previous sef

df Tecture noted. Thanks to the Ward identities, we can do it in terms of the M amplitude
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as

S TIMP = +MM:,. (13)
A1,A2

For the annihilation process at hand M* = M{" + ME” | so

Do IMP = MM, = MM, - METMS,, + 2Re MEVMG,, . (14)
A1,A2

Note that this formula does not need the M4” and M4" amplitudes to obey the Ward
identities by themselves, it is enough that the net amplitude M{” + M4L” obeys the identities.
Specifically, for the M{" and M4 as in eqgs. (5), we have

4
Z IM|? = (t_eTg)Q x 7Y (f + m)y u x vy +m)yv
A1,A2
4
+ (u—eimz)Q X 0YH(F + m)y u x ay, (§ + m)yv (15)
+ 2¢! xRe(T) Y + m)yHu x uyy (d + m) v)
(t_mQ)(u_mQ) /y ’Y 77/ /YM .

This formula takes care of summing over the photon polarizations, and now we need to

average the result over the initial fermions’ spins. As explained in [y earlier notes on Dirad

traced, in general

> 6prsi)Tulp-,s-) X alp, s ) Tu(py,54) = Te((F = mTE- +m).  (16)

51,52

Consequently, averaging eq. (15) over the electron’s and positron’s spins gives us

MP = 31> > ImP
8—78+)\17)\2
et et 2¢4 <17)
B (T e G ) R
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where

A = 53 0o, sn @+ m)vFulp-,so) x @(p-, s )yl + m)wo(p, s1)

S—,S5+

= 11 (0h — m) + M+ )+ m)).

Ay = § ) 0(p, s )™ (@ + m)y"u(p—, s-) X alp—, 5= )73 + m)yuo(ps, 5+)
S_,5+ (18)

= ETe((e = m)y G+ )y G )+ ),
Ay = 1) 0(pg, s (@ +mIn ulp—, s-) X alp—, s )yuld +m)no(py, s1)

= (s =m0+ M O+ mn @+ m))

And now we need to calculate these big traces. ..

Traceology 1

Let’s start with the Ay trace. It looks rather formidable, but we may simplify it using

formulae

Yy = 4, Aldy, = =24, Ad¥y, = 4(ad), V'd¥ty = -2 ¢Wd (19)

from the homework set §. Indeed, after a cyclic permutation of matrices inside the trace, we

obtain
A = ETe (e —m)y” X (f +m) x 3= +m)y x (d +m)) (20)

where
@ +m)y = 26— —2m),  wWs —m)y” = =20+ +2m) (21)

thanks to eq. (19), hence
A = T+ 2m)(d +m) (- — 2m)(d +m) ). (22)

Next, we expand the parentheses inside this trace and throw away terms with odd numbers
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of momenta § or ¢. This gives us

Ain = Te(ed o) + m* x Te(ppo) — 4m® x Te(f o)
+ 2x2m? x Tr(f—of) — 2 % 2m® x Tr(Poof) — 4m* x Tr(1)
= 8(p1q) x (p-q) — 4psp-) x ¢* + 4mP(pyp-) — 16m*¢’
+ 16m*(p_q) — 16m*(pyq) — 16m*.

= 8(p+9)(p-q) — 4¢" —m?) x (prp-) — 16m* x (¢* — (p-q) + (p+q) + mQ)(- |
23

We may further simplify this formula by expressing all the momenta products in terms of

the Mandelstam’s variables s, ¢, and u. Using p = p2+ = m? and k:% = k:% = 0, we have

F = (p- —k)? =t

- = (- —k)p— = m®> —p_ki = m® + 3t —m®) = +5(m° +1), ”
gy = (k2 —p)pe = prka —m® = —5(t—m®) —m® = —5(t+m?),
p-p+ = 5(s —2m?).
Consequently, on the last line of eq. (23), the last term vanishes —
¢ = (-q) + (p4q) +m* =t = (t+m?) — 3(t+m’) +m* =0 (25)
— while the remaining terms add up to
An = 8(p+a)(p-q) — 4(@® —m®) x (p1p-)
= 20t+m?»? — 20t —m?) x (s —2m? = —t — )
= =22 — 4tm?® — 2m? + 262 4+ 2tu — 2tm® — 2um? (26)

= 2tu —6tm2 — 2um? — 2m*

= 2(t —m?) (u—3m?) — 8m*.

This completes our evaluation of the first trace.

As to the second trace Asy, we could work it out through a similar calculation, but

fortunately there is a shortcut. The two diagrams (1) for the annihilation process are related to



each other by a crossing symmetry, which exchanges t <» v and also Aj; <+ Age. Consequently,

given eq. (26) for the first trace, the second trace follows as

Ap(t,u) = Ay(t < u) = 2(u—m?)(t—3m?) — sm™. (27)

Traceology 2

Now consider the the third trace Ajo which accounts for the interference between the two
diagrams (1). Again, this is a rather formidable trace, but we may simplify it using eqs. (19).

Let’s start with the 4" (4 + m)y*(¥— + m)~, factor inside the trace:

Y +m W +m)y = mEx Ay + omox A (AR + A )

= —2m2y" 4 dm(q+p )t — 24 M.
(28)

Plugging this formula into eq. (18) for the A2, we obtain

A = (9 (f +m)y e+ m) X [ +m) e —m)
= T (|mlg+p)" = S+ ') | x [m(rs = ) + @ — m*3)])
{( throwing away products of odd numbers of v matrices ))

= Tr(m(q +p_ ) x m(vu P — ﬁM)) — %Tr((m27“+ P—"d) x (Frubs — m2w))
(29)

where the two traces on the bottom line evaluate to
Tr(m(q +p ) xm (v By — dw)) = m*(q+ p-)" x Tr((p+ — @) 7u)
= m*(q+p-)" x 4(p+ — §)u (30)
= 4m?(=(ad) + (ap+) — (@-) + (p-p+))
and
Te((m2y+ por"d) X @b — m*)) =
= Tr(p—divup+) + m? Te(Fgups) — m? Te(-r"dy,) —m® Tr(vv,)
((using V'div = 4(a), ' = —24, V' = —24, and 7y, = 4)  (B31)
= 4(qq) x Tr(p_ ¥y) — 2m? x Te(d4y) + 2m> x Te(F_ o) — 4m* x Tr(1)

= 16(¢9)(p-p+) — 8m(Gp1) + 8m*(gp-) — 16m™.



Combining the two traces, we arrive at

Az = =8(gq)(p-p+) +4m* (—(qd) + (ap+) — (ap-) + (@p+) — (Gp-) + (p-p=+)) +8m". (32)

We may simplify this rather messy formula by expressing all the momenta products in terms

of the Mandelstam variables s, ¢, u. Back in eq. (24) we saw that

¢ =t (=) = +3t+m?), (ep4) = —5(t+m?), and (p_py) = L(s—2m?), (33)

and now we also need

ip- = (p-—k)p- = m* —kop- = m* + J(u—m?) = +5(u+m?),
ipy = (i—po)py = kipy — m* = —3(u—m?) —m? = —$(u+m?), (34)
Gg = (p-—ka)(p- —k1) = p> —p-(ki+hka=p_+py) + kike
= kiky — p_pr = is —i(s—2m?) = m?
Plugging all these formulae into eq. (32), we finally arrive at
A12 = —877?,2 X (%S—TTT?) + 8m4
+ 4m? x (—m2 - %(t+m2) X 2 — %(u+m2) X 2 + (%s—m2))
= —2m? x (2t +2u + s) (35)

= —2m? X (t 4+ u+ 2m?)

= —2m2(t —m?) — 2m%(u—m?) — sm®.



Annihilation Summary

Having worked out the big traces, let’s plug them back into eq. (17):

64

oA
(=2 X (2(u —m?)(t — 3m?) — 8m4>
2¢* 2 2 2 2 4
+ = )i = m?) X (—Qm (t —m?) — 2m*(u —m*) — 8m )
[ — 3m? t — 3m? 2m? 2m?
o t —m? uw — m? u — m? t —m? (36)
= 2e
4m? 4m? 8m?
_ (E—m??  (w—m2?  (t—m?)(u—m?)
w—m?  t—m? A2 ( 1 1 )
2 g — =m 2 2
A t—m uUu—m t—m uUu—m
= 2e . . NE
— 4mA
L " <t — m? u— m2)
or more compactly
2 2 2 2\ 2
u—m t—m 2m 2m

M2 = 264 + +1 — (1 + . 37
‘ ‘ ¢ t —m? u — m? * t —m? u — m? ( )

This is our final result; the rest is kinematics.

Annihilation Kinematics

In the center of mass frame, pi_t = (E,+p) where E = ++/p? +m?, and ku = (w, £k)
where w = |k| = E. Consequently,

s = 4F?

t = —(p—k)? = —p? — E? + 2|p|E cos¥,

u = —(p+k)? = —p? — E? —2|p|E cos¥, (38)
t—m? = —2F(E — |p|cos#),
u—m? = —2F(E + |p|cosf),



and therefore

u—m?  t—m? E + |p|cos§  E —|p|cosb
5 + 5 +1 = + +1
t—m u—m E —|p|cosf  E +|p|cosb

3E?% 4 p?cos? 0
E? — p2cos?f

3m? + p?(3 + cos? 9)
m?2 + p2sin® 6

(39)
1 1 -1 1 1
=+ s = == +
t—m u—m 2E \ E — |p|cosf  E+ |p|cosé
_ -1, 2 B -1
~ 2E " E?-p?cos?  m2+p?sin®6’
2m? 2m? p?sin? 0 — m?
t—m u—m p2sin® 0 + m?2
Altogether
Im2 2(3 29 26120 — m2\ >
ME = gt |2 IR OOl (Bt ) | (40)
m? + p? sin” 0 p2sin® 0 + m?

and hence the partial cross section of annihilation

do(ete™ — v7) K| |M|? B a?
A m. ~ |p| 64725  SE|p|

m?2 + p2sin® 6 p2sin? 0 + m?2

3m? + p%(3 + cos?0) <p2 sin? § — m? > 2]

(41)

For the non-relativistic electron and positron with |p| < m, the expression in the square

brackets becomes 3 — (—1)? = 2, hence isotropic partial cross section

do(slow eTe™ — v7) _ o? . (42)
dQc.m. 4m|p|
And the total cross section in this limit is
4 2 2
oot (slow eTe™ — vy) = T a o (43)

— X — ,
2 4mlp| 2m/|pl|

where the total solid angle is 47 /2 because of 2 identical photons in the final state.
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In the opposite limit of ultra-relativistic e~ and et with |p| & E > m, we have

3 20 2(1 20
-] N 3tcos b 20 tcosh) (44)
sin“ ¢ sin“ ¢
and hence highly anisotropic cross section
do(fast eTe™ — ) N o? y 1 jL'c;)s2 0 . (45)
d€c.m. 4E? sin” ¢

Note how this cross-section is strongly peaked in the forward direction # = 0 where one photon

continues the electron’s motion while the other continues the positron’s motion.

According to eq. (45), the total annihilation cross-section

w/2
d
orot(fast ete™ = 4y) = 27 /d@ sin 0 — (46)
dQem
0

diverges at small angles, but that’s an artefact of the approximation (44) becoming inaccurate

at small angles where p?sin® 0 < m?2. Instead, for small angles we have

4p?
] = e 00 4
and consequently
do(fast eTe™ — 77) ~ o? y 2p? . (48)
A m. 4F2 " m? + p26?

This cross-section is strongly peaked in the forward direction, but it does not diverge. Instead,

2 2E 1
oot (fast eFe™ — yy) = LIS (log— - —) : (49)
m
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Compton Scattering

Compton scattering of an electron and a photon e™y — e~ is related by crossing sym-
metry to the e”et — 7y annihilation. Indeed, at the tree level there are two diagrams

/ —/ / —/

g e Y e

Y e Y e (50)

which are obviously related by the s <> ¢ crossing to the annihilation diagrams (1). Hence,
given eq. (37) for the annihilation, we may immediately write down a similar formula for the
Compton scattering without doing any work. All we need is to exchange s <> ¢ in eq. (37)

and change the overall sign because we cross one fermion, thus

2 2 2 2\ 2
: u—m s—m 2m 2m
’MComptonP — 264 _ 5 5 — 1 + (1 + 5 + 5 . (51)
s—m U—m s—m U—m

This is it, except for the kinematics.

The Compton scattering is usually studied in the lab frame where the initial electron is at
rest, p* = (m,0). In this frame, the initial and the final photon energies w and w’ are related

to photon’s scattering angle 6 via the Compton’s formula

1

1 1 —cost
- - 4+ — (52)
W w Me

originally written by Arthur Compton in terms of the photon’s wavelengths as

27h

MeC

No— A=

X (1 —cos@). (53)

According to this formula, there is an upper limit on the energy of the final photon for any fixed

0 # 0: regardless of the initial energy w, the final energy w’ can never exceed me/(1 — cos6).
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The Compton’s formula follows from the energy-momentum conservation

W+ E =w+m and K +p' =k + 0, (54)
which imply
p? = (k—-k)? = K2 + K? - 2%k - K = w? + w? — 2w cosb (55)
while
p? +m? = E? = (w+m—u)? = ® + J? — 2w + 2wm — 2'm + m?. (56)

Subtracting these two formulae and canceling similar terms gives us
2wm = 2w'm + 2ww’ x (1 —cosb) (57)

and hence eq. (52).

The Mandelstam variables s and « in the lab frame are

s = (k+p)? = (w+m)? — (k+0)? = 2wm + m?, (58)
58
u=(K-p?=(@W-m?—- K-02=—-2m + m?
and hence
s —m? = +2mw, u—m? = —2mw'. (59)
Plugging these values into eq. (51), we have
u—m?  s—m? Wwoooow
- - -1 =4—+ = -1
s—m2  u—m?2 woow
2m? 2m? m m 60
1+ 7 e e
s—m u—m woow
= —cos#t
where the last equality follows from eq. (52), and therefore
/
| MCompton|2 — 9¢4 <£ + i, — 1 + cos? 9) . (61)
woow

Finally, we need the phase space factor for the lab frame. For a generic 2 — 2 scattering

13



process,

do = |M|? x dP, where

dP = ! S W x (2m)8Y (p) + ph — p1 — p2)
2E1 X 2E2 X Av (27)3 2Ei (27)2 QEé ! ? 1 i

1
:Mﬁ&@ﬂ%mffMMﬂ+@—&—&)

(62)

P5=P1+P2—P]

-1
p’z—p1+pzp’1>

Specializing to the Compton scattering and the lab frame for initial electron, we immediately

= dQ/l X p/12 X M
6471’2 ElEgEiEé Av d|p/1|

obtain

aP =

X 1 —_—
6472 = wmw'E! + dw’

—1
dQ 12 E/
il d x< d ). (63)
p'=k—k’

The only non-trivial issue here is the derivative in the parentheses. This derivative should

be taken for a fixed photon angle § and before applying the energy conservation rule E, =
w+m — w'. Instead, we use the momentum conservation p’ = k — k', hence eq. (55) for the

p’? and consequently

E? = p? + m? = w? + W? — 2w xcosh+ m? (64)
For fixed w and 6,
2F' x dE" = 2|p'| x d|p/| = 2(w' —wcosh) x du’, (65)
and hence
dE' W' —wcosh (66)
dw' E' '
Once we have taken this derivative me may use the energy conservation, thus
!+ dE’ _ E' + W —wcosf _ mtw—wcost wm’ (67)
dw’ E' E’ w'E'

where the last equality follows from the Compton formula (52). Plugging the derivative (67)
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into eq. (63), we arrive at

dQ w'
642 m2w? (68)
and hence the Klein—Nishina formula for the partial cross-section:
dUCornpton Oc2 w/Q W' w )
= X —X|— + — — sin“f 69
dan 2m2  w? < w W' ) (69)

where w’ is given by the Compton formula (52).

For low photon energies w < m,, the Compton’s formula gives w’ ~ w, and the Klein—

Nishina cross-section (69) becomes the good old Thompson cross-section

d OCompton d O.Thornpson a2

—_— = 2 —sin?0 = 1 20
o — o 22 X (2 — sin + cos” 0), (70)

and the total cross-section is

Thompson __ 8_71-
Ttotal o 3

msw ‘ QI\D

~ 0.663 barn. (71)

On the other hand, for very high photon energies w > m, and 6 % 0, we have

~

W Kw = £+£/—sin2«9%i/, (72)
w w w
and the Klein—Nishina formula becomes
dOCOmpton Oz2 W' a2 1
~ 5 X — & X : (73)
dan 2ms w 2me X w1 —cosé

This approximation is not accurate at small angles § < /2m./w for which &’ &« w, so the
cross section does not really diverge for # — 0. Instead, at small angles we have large but

finite partial cross-section

o Compton o g4 — 292(2m6/w) + 2(2m6/W)2

~

dan T e X w % (02 + (2me/w))3

4 00 (74)
and hence finite total cross-section

2
mpton 2 1
glompton - T4 (log =y —). (75)
m

total
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