
Correlation Functions in Perturbation Theory

Many aspects of quantum field theory are related to its n-point correlation functions

Fn(x1, . . . , xn)
def
= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉 (1)

— or for theories with multiple fields Φ̂a,

Fa1,...,an

n (x1, . . . , xn)
def
= 〈Ω|TΦ̂a1

H (x1) · · · Φ̂
an

H (xn) |Ω〉 . (2)

Note that all the fields Φ̂H(x) here are in the Heisenberg picture so their time dependence

involves the complete Hamiltonian Ĥ of the interacting theory. Likewise, |Ω〉 is the ground

state of Ĥ , i.e. the true physical vacuum of the theory.

In perturbation theory, the correlation functions Fn of the interacting theory are related to

the free theory’s correlation functions

〈0|TΦ̂I(x1) · · · Φ̂I(xn) · · ·more Φ̂I(z1)Φ̂I(z2) · · · |0〉 . (3)

involving additional fields Φ̂I(z1)Φ̂I(z2) · · ·. Note that in eq. (3) the fields are in the interaction

rather than Heisenberg picture, so they evolve with time as free fields according to the free

Hamiltonian Ĥ0. Likewise, |0〉 is the free theory’s vacuum, i.e. the ground state of the free

Hamiltonian Ĥ0 rather than the full Hamiltonian Ĥ.

To work out the relation between (1) and (3), we start by formally relating quantum fields

in the Heisenberg and the interaction pictures,

Φ̂H (x, t) = e+iĤtΦ̂S(x)e
−iĤt = e+iĤte−iĤ0tΦ̂I(x, t)e

+iĤ0te−iĤt. (4)

We may re-state this relation in terms of evolution operators using a formal expression for the

later,

ÛI(t, t0) = e+iĤ0te−iĤ(t−t0)e−iĤ0t0. (5)

Note that this formula applies for both forward and backward evolution, i.e. regardless of
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whether t > t0 or t < t0. In particular,

ÛI(t, 0) = e+iĤ0te−iĤt and ÛI(0, t) = e+iĤte−iĤ0t, (6)

which allows us to re-state eq. (4) as

Φ̂H(x) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, 0). (7)

Consequently,

Φ̂H(x)Φ̂H(y) = ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0) (8)

because ÛI(x
0, 0)ÛI(0, y

0) = ÛI(x
0, y0), and likewise for n fields

Φ̂H(x1)Φ̂H(x2) · · · Φ̂H(xn) = (9)

= ÛI(0, x
0
1)Φ̂I(x1)ÛI(x

0
1, x

0
2)Φ̂I(x2) · · · ÛI(x

0
n−1, x

0
n)Φ̂I(xn)ÛI(x

0
n, 0).

Now we need to relate the free vacuum |0〉 and the true physical vacuum |Ω〉. Consider

the state ÛI(0,−T ) |0〉 for a complex T , and take the limit of T → (+1 − iǫ) × ∞. That is,

ReT → +∞, ImT → −∞, but the imaginary part grows slower than the real part. Pictorially,

in the complex T plane,

T

(10)

we go infinitely far to the right at infinitesimally small angle below the real axis.
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Without loss of generality we assume the free theory has zero vacuum energy, thus Ĥ0 |0〉 = 0

and hence

ÛI(0,−T ) |0〉 = e−iĤT e+iĤ0T |0〉 = e−iĤT |0〉 . (11)

From the interacting theory’s point of view, |0〉 is a superposition of eigenstates |Q〉 of the full

Hamiltonian Ĥ,

|0〉 =
∑

Q

|Q〉 × 〈Q|0〉 =⇒ e−iĤT |0〉 =
∑

Q

|Q〉 × e−iTEQ 〈Q|0〉 (12)

In the T → (+1− iǫ)×∞ limit, the second sum here is dominated by the term with the lowest

EQ, so we look for the lowest energy eigenstate |Q0〉 with the same quantum numbers as |0〉

(otherwise, we would have zero overlap 〈Q0|0〉). Obviously, such |Q0〉 is the physical vacuum

|Ω〉, so

ÛI(0,−T ) |0〉 −−−−−−−−→
T→(+1−iǫ)∞

|Ω〉 × e−iTEΩ 〈Ω|0〉 (13)

and therefore

|Ω〉 = lim
T→(+1−iǫ)∞

ÛI(0,−T ) |0〉 ×
e+iTEΩ

〈Ω|0〉
. (14)

Likewise,

〈Ω| = lim
T→(+1−iǫ)∞

e+iTEΩ

〈0|Ω〉
× 〈0| ÛI(+T, 0) . (15)

Combining eqs. (8), (14), and (15), we may now express the two-point function as

〈Ω| Φ̂H(x)Φ̂H (y) |Ω〉 = lim
T→(+1−iǫ)∞

C(T )× 〈0|Big Product |0〉 (16)

where

C(T ) =
e2iTEΩ

|〈0|Ω〉|2
(17)

is a just a coefficient, and

Big Product = ÛI(+T, 0)ÛI(0, x
0)Φ̂I(x)ÛI(x

0, y0)Φ̂I(y)ÛI(y
0, 0)ÛI(0,−T )

= ÛI(+T, x0)Φ̂I(x)ÛI(x
0, y0)Φ̂I(y)ÛI(y

0,−T ).
(18)

For x0 > y0, the last line here is in proper time order, so if we re-order the operators, the
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time-orderer T would put them back where they belong. Thus, using T to keep track of the

operator order, we have

Big Product = T
(

ÛI(+T, x0)Φ̂I(x)ÛI(x
0, y0)Φ̂I(y)ÛI(y

0,−T )
)

= T
(

Φ̂I(x)Φ̂I (y)× ÛI(+T, x0)ÛI(x
0, y0)ÛI(y

0,−T )
)

= T
(

Φ̂I(x)Φ̂I (y)× ÛI(+T,−T )
)

= T



Φ̂I (x)Φ̂I(y)× exp





−iλ

24

+T
∫

−T

dt

∫

d3z Φ̂4
I(t, z)









(19)

where the last line follows from the Dyson series for the evolution operator

UI(tf , ti) = T-exp



−i

tf
∫

ti

dt V̂I(t)



 = T-exp





−iλ

24

tf
∫

ti

dt

∫

d3z Φ̂4
I(t, z)



 .

Altogether, the two-point correlation function becomes

F2(x, y)
def
= 〈Ω|TΦ̂H(x)Φ̂H(y) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T

(

Φ̂I(x)Φ̂I(y)× exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 ,
(20)

where the spacetime integral has ranges

∫

d4z ≡

+T
∫

−T

dz0
∫

whole

space

d3z . (21)

Similarly, the n-point correlation functions can be written as

Fn(x1, . . . , xn)
def
= 〈Ω|TΦ̂H(x1) · · · Φ̂H(xn) |Ω〉

= lim
T→(+1−iǫ)∞

C(T )× 〈0|T

(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 .

(22)

Note that the coefficient C(T ) — cf. eq. (17) — is the same for all correlation functions.
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In particular, for n = 0 the F0 = 〈Ω|Ω〉 = 1, but it’s also given by eq. (22), hence

lim
T→(+1−iǫ)∞

C(T )× 〈0|T

(

exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 = 1. (23)

This allows us to eliminate the C(T ) factors from eqs. (22) by taking ratios of the free-theory

correlation functions,

Fn(x1, . . . , xn) = lim
T

〈0|T
(

Φ̂I(x1) · · · Φ̂I(xn)× exp
(

−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉

〈0|T
(

exp
(

−iλ
24

∫

d4z Φ̂4
I(z)

))

|0〉
. (24)

The limit here is T → (+1− iǫ)×∞, and the T dependence under the limit is implicit in the

ranges of the spacetime integrals, cf. eq. (21).

In perturbation theory, the vacuum sandwiches in the numerator and the denominator of

eq. (24) can be expanded into sums of Feynman diagrams. Indeed, expanding the numerator

in a power series in λ, we obtain

〈0|T

(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 =

=

∞
∑

N=0

(−iλ)N

(4!)N N !

∫

d4z1 · · ·

∫

d4zN 〈0|TΦ̂I(x1) · · · Φ̂I(xn)× Φ̂4
I(z1) · · · Φ̂

4
I(zN ) |0〉

(25)

where each sub-sandwich 〈0|TΦ̂I(x1) · · · Φ̂I(xn)× Φ̂4
I(z1) · · · Φ̂

4
I(zN ) |0〉 expands into a big sum

of products of 4N+n
2 Feynman propagators GF (xi − xj), GF (xi − zj), or GF (zi − zj). We have

gone through expansion back in November — here are my notes — so let me simply summarize

the result in terms of the Feynman rules for the correlation functions:

⋆ A generic Feynman diagram for the n-point correlation function has n external ver-

tices x1, . . . , xn or valence = 1 plus some number N = 0, 1, 2, 3, . . . of internal vertices

z1, . . . , ZN of valence = 4. On the other hand, it has no external lines but only the

internal lines between the vertices. Here is an example diagram with 2 external vertices,
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2 internal vertices, and 5 internal lines:

(26)

• To evaluate a diagram in coordinate space, first multiply the usual factors:

∗ The free propagator GF (zi− zj) for a line connecting vertices internal zi and zj , and

likewise for lines connecting an internal vertex zi to an external vertex xj , or two

external vertices xi and xj .

∗ (−iλ) factor for each internal vertex.

∗ The combinatorial factor 1/#symmetries of the diagram (including the trivial sym-

metry).

Second, integrate
∫

d4z over each internal vertex location; the integration range is as in

eq. (21). But do not integrate over the external vertices — their location’s x1, . . . , xn are

the arguments of the n-point correlation function Fn(x1, . . . , xn).

• To calculate the numerator of eq. (24) to order λNmax , sum over all diagrams with n

external vertices, N ≤ Nmax internal vertices, and any pattern of lines respecting the

valences of all the vertices.

At this point, we are summing over all kinds of diagrams, connected or disconnected, and

even the vacuum bubbles are allowed. However, similar to what we had back in November, the

vacuum bubbles can be factored out:

∑

(all diagrams) =
∑

(

diagrams without

vacuum bubbles

)

×
∑

(

vacuum bubbles

without external vertices

)

. (27)

Moreover, the vacuum bubble factor here is the same for all the free-theory vacuum sandwiches

〈0|T

(

Φ̂I(x1) · · · Φ̂I(xn)× exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉

6



in the numerators of eqs. (24) for all the correlation functions, and also in the n = 0 sandwich

〈0|T

(

exp

(

−iλ

24

∫

d4z Φ̂4
I(z)

))

|0〉 =
∑

(

vacuum bubbles

without external vertices

)

(28)

in the all the denominators. This means that the vacuum bubbles simply cancel out from the

correlation functions! In other words,

Fn(x1, . . . , xn) =
∑







Feynman diagrams with

n external vertices x1, . . . xn

and without vacuum bubbles






. (29)

Besides reducing the number of diagrams we need to calculate, the cancellation of the

vacuum bubbles leads to another simplification: Instead of evaluating each diagram for a finite

T , taking the ratio of two sums diagrams, and only then taking the T → (+1 − iǫ)∞ limit,

we may now take that limit directly for each diagram . In practice, this means integrating

each
∫

d4zi over the whole Minkowski spacetime instead of a limited time range from −T

to + as in eq. (21). Consequently, when we Fourier transform the Feynman rules from the

coordinate space to the momentum space, we end up with the usual momentum-conservation

factors (2π)4δ(4)(±q±1 q2 ± q3 ± q4) at each internal vertex instead of something much more

complicated.

So here are the momentum-space Feynman rules for the correlation functions:

• Since all the lines are internal, assign a variable momentum qµi to each line and specify

the direction of this momentum flow (from which vertex to which vertex).

∗ Each line carries a propagator
i

q2 −m2 + i0
.

∗ Each external vertex x carries a factor e+iqx or e−iqx, depending on whether the momen-

tum q flows into or out from the vertex.

∗ Each internal vertex carries factor (−iλ)× (2π)4δ(4)(±q±1 q2 ± q3 ± q4).

∗ Overall combinatorial factor 1/#symmetries for the whole diagram.

• Multiply all these factors together, then integrate over all the momenta qµi .
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For example, the diagram (26) evaluates to

F2(x, y) ⊃
1

6

∫

d4q1
(2π)4

· · ·

∫

d4q5
(2π)4

5
∏

i=1

i

q2i −m2 + iǫ
× e−iq1x × e+iq2y×

× (−iλ)(2π)4δ(4)(q1 − q3 − q4 − q5)×

× (−iλ)(2π)4δ(4)(q3 + q4 + q5 − q2)

=
−iλ2

6

∫

d4q1
(2π)4

e−iq1(x−y) ×

(

1

q21 −m2 + iǫ

)2

×

×

∫∫

d4q3 d
4q4

(2π)8
1

q23 −m2 + iǫ
×

1

q24 −m2 + iǫ
×

×
1

(q5 = q1 − q3 − q4)2 −m2 + iǫ

(30)

Note: as defined in eq. (1), the correlation functions Fn(x1, . . . , xn) obtain by summing

all Feynman diagrams without vacuum bubbles, cf. eq. (29). Both the connected and the

disconnected diagrams are included, as long as each connected part of a disconnected diagram

has some external vertices. However, the disconnected diagrams’ contributions can be re-

summed in terms of correlation functions of fewer fields. Indeed, let’s define the connected

correlation functions

F conn
n (x1, . . . , xn) =

∑

(

connected Feynman diagrams

with n external vertices

)

. (31)

Then the original Fn functions can be obtained from these via cluster expansion:

F2(x, y) = F conn
2 (x, y),

F4(x, y, x, w) = F conn
4 (x, y, z, w) + F conn

2 (x, y)×F conn
2 (z, w)

+ F conn
2 (x, z)×F conn

2 (y, w) + F conn
2 (x, w)× F conn

2 (y, z),

F6(x, y, x, u, v, w) = F conn
6 (x, y, z, u, v, w)

+
(

F conn
2 (x, y)×F conn

4 (z, u, v, w) + permutations
)

+
(

F conn
2 (x, y)×F conn

2 (z, u)×F conn
2 (v, w) + permutations

)

,

etc., etc.

(32)
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