
PHY–396 K. Problem set #2. Due September 18, 2012.

1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e.,

a set of N fields (complex scalars or Dirac fermions) which transform as a complex N–

vector,

Ψ′(x) = U(x)Ψ(x) i. e. Ψ′i(x) =
∑
j

U j
i (x)Ψj(x), i, j = 1, 2, . . . , N (1)

where U(x) is an x–dependent unitary N×N matrix, detU(x) ≡ 1. Now consider N2−1

real fields Φa(x) forming an adjoint multiplet: In matrix form

Φ(x) =
∑
a

Φa(x)× λa

2
(2)

is a traceless hermitian N×N matrix which transforms under the local SU(N) symmetry

as

Φ′(x) = U(x)Φ(x)U †(x). (3)

Note that this transformation law preserves the Φ† = Φ and tr(Φ) = 0 conditions.

The covariant derivatives Dµ act on an adjoint multiplet of fields multiplet as

DµΦ(x) = ∂µΦ(x) + i[Aµ(x),Φ(x)] ≡ ∂µΦ(x) + iAµ(x)Φ(x) − iΦ(x)Aµ(x), (4)

or in components

DµΦa(x) = ∂µΦa(x) − fabcAbµ(x)Φc(x). (5)

(a) Verify that these derivatives are indeed covariant — the DµΦ(x) transforms under

the local SU(N) symmetry exactly like the Φ(x) itself.

(b) Verify the Leibniz rule for covariant derivatives of matrix products. Let Φ(x) and

Ξ(x) be two adjoint multiplets while Ψ(x) is a fundamental multiplet and Ψ†(x) is
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its hermitian conjugate (row vector of Ψ∗i ). Show that

Dµ(ΦΞ) = (DµΦ)Ξ + Φ(DµΞ),

Dµ(ΦΨ) = (DµΦ)Ψ + Φ(DµΨ),

Dµ(Ψ†Ξ) = (DµΨ†)Ξ + Ψ†(DµΞ).

(6)

(c) Show that for an adjoint multiplet Φ(x),

[Dµ, Dν ]Φ(x) = i[Fµν(x),Φ(x)] = ig[Fµν(x),Φ(x)] (7)

or in components [Dµ, Dν ]Φa(x) = −gfabcF bµν(x)Φc(x).

• In my notations Aµ and Fµν are canonically normalized fields while Aµ = gAµ and

Fµν = gFµν are normalized by the symmetry action.

In class, I have argued (using covariant derivatives) that the tension fields Fµν(x) them-

selves transform according to eq. (3). In other words, the Faµν(x) form an adjoint multiplet

of the SU(N) symmetry group.

(d) Verify the F ′µν(x) = U(x)Fµν(x)U †(x) transformation law directly from the definition

Fµν
def
= ∂µAν−∂µAν+i[Aµ,Aν ] and the non-abelian gauge transform of theAµ fields.

(e) Verify the Bianchi identity for the non-abelian tension fields Fµν(x):

DλFµν + DµFνλ + DνFλµ = 0. (8)

Note the covariant derivatives in this equation.

Finally, consider the SU(N) Yang–Mills theory — the non-abelian gauge theory that does

not have any fields except Aa(x) and Fa(x); its Lagrangian is

LYM = − 1

2g2
tr
(
FµνFµν

)
=
∑
a

−1
4 F

a
µνF

aµν . (9)

(f) Show that the Euler–Lagrange field equations for the Yang–Mills theory can be writ-

ten in covariant form as DµFµν = 0.

Hint: first show that for an infinitesimal variation δAµ(x) of the non-abelian gauge

fields, the tension fields vary according to δFµν(x) = DµδAν(x)−DνδAµ(x).
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2. Continuing the previous problem, consider an SU(N) gauge theory in which N2−1 vector

fields Aaµ(x) interact with some “matter” fields φα(x),

L = − 1

2g2
tr
(
FµνFµν

)
+ Lmat(φ,Dµφ). (10)

For the moment, let me keep the matter fields completely generic — they can be scalars,

or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N)

symmetry as long as such multiplet is complete and non-trivial. All we need to know

right now is that there are well-defined covariant derivatives Dµφ that depend on the

gauge fields Aaµ, which give rise to the currents

Jaµ = −∂Lmat

∂Aaµ
. (11)

Collectively, these N2 − 1 currents should form an adjoint multiplet Jµ =
∑

a(
1
2λ

a)Jaµ

of the SU(N) symmetry.

(a) Show that in this theory the equation of motion for the Aaµ fields are DµF
aµν = Jaν

and that consistency of these equations requires require the currents to be covariantly

conserved,

DµJ
µ = ∂µJ

µ + i[Aµ, Jµ] = 0, (12)

or in components, ∂µJ
aµ − fabcAbµJcµ = 0.

Note: a covariantly conserved current does not lead to a conserved charge,

(d/dt)
∫
d3x Ja0(x, t) 6= 0!

Now consider a simple example of matter fields — a fundamental multiplet Ψ(x) of N

scalar fields Ψi(x), with a Lagrangian

Lmat = DµΨ†DµΨ − m2Ψ†Ψ − λ

4

(
Ψ†Ψ)2, Lnet = Lmat −

1

2g2
tr
(
FµνFµν

)
. (13)

(b) Derive the SU(N) currents Jaµ for this set of fields and verify that under SU(N)

symmetries the currents transform covariantly into each other as members of the

adjoint multiplet. That is, the N×N matrix Jµ =
∑

a(
1
2λ

a)Jaµ transforms according

to eq. (3).

Hint: for any complex vectors Ψ and Ψ′,
∑

a(Ψ
†λaΨ′)λa = 2Ψ′⊗Ψ†− 2

N (Ψ†Ψ′)× 1.
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(c) Finally, verify the covariant conservation DµJ
aµ of these currents when the scalar

fields Ψi(x) and Ψ†i (x) obey their equations of motion.

3. The last problem is about general multiplets of general gauge groups. Consider a Lie

group G with generators T̂ a obeying commutation relations [T̂ a, T̂ b] = ifabcT̂ c. Under

an infinitesimal local symmetry

G(x) = 1 + iΛa(x)T̂ a + · · · , infinitesimal Λa(x), (14)

the gauge fields Aaµ(x) transform as

Aaµ(x) → Aaµ(x) − DµΛa(x) = Aaµ(x) − ∂µΛa(x) − fabcΛb(x)Acµ(x). (15)

Other fields of the gauge theory (scalar, spinor, or whatever) must form complete mul-

tiplets of the gauge group G. In any such multiplet (m), the generators T̂ a are repre-

sented by size(m) × size(m) matrices (T a(m))
β
α satisfying similar commutation relations,

[T a(m), T
b
(m)] = ifabcT c(m). The fields Ψα(x) belonging to such multiplet transform under

infinitesimal gauge transforms (14) as

Ψα(x) → Ψα(x) + iΛa(x)(T a(m))
β
α Ψβ(x) (16)

and the covariant derivatives Dµ act on these fields as

DµΨα(x) = ∂µΨα(x) + iAaµ(x)(T a(m))
β
α Ψβ(x). (17)

• Verify covariance of these derivatives under infinitesimal gauge transforms (14).

? For extra challenge, only for the students familiar with the basic theory of Lie groups:

Prove covariance of the derivatives (17) under finite gauge transforms.

Hint: use Lemma on the next page.
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Lemma: For any finite symmetry G ∈ G, the matrix
(
R(m)(G)

) β
α

representing this

symmetry in the multiplet (m) satisfies

(
R(m)(G)

) β
α

(
T a(m)

) γ
β

(
R−1
(m)

(G)
) δ
γ

=
(
T b(m)

) δ
α
Rbaadj(G) (18)

where Rbaadj(G) represents G in the adjoint multiplet. Note that the same Rbaadj(G) appears

on right hand sides of eqs. (18) for all multiplets (m) of G — and that’s what allows us

to use the same gauge fields Aaµ(x) to make covariant derivatives (17) for all multiplets

of the gauge group G.
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