PHY-396 K. Problem set #2. Due September 18, 2012.

1. In class, I have focused on the fundamental multiplet of the local SU(N) symmetry, i.e.,
a set of N fields (complex scalars or Dirac fermions) which transform as a complex N—

vector,

V() = U@)¥(z) ie W) =Y U@)¥(x), i,j=12....N (1)
J

where U(z) is an z—dependent unitary N x N matrix, det U(z) = 1. Now consider N? — 1

real fields ®%(x) forming an adjoint multiplet: In matrix form
)\CL
o = o — 2
) = T 2)

is a traceless hermitian N x N matrix which transforms under the local SU(N) symmetry

as

'(z) = Ulx)®(x)U'(2). (3)

Note that this transformation law preserves the ®f = ® and tr(®) = 0 conditions.

The covariant derivatives D,, act on an adjoint multiplet of fields multiplet as
Dub(z) = 0,8(x) + ilAu(x), 2(x)] = 0,0(x) + idu()B(x) — iD(x)Au(). (4)

or in components

D,®%(z) = 9,Pq(z) — f°Ab(2)P¢(). (5)

(a) Verify that these derivatives are indeed covariant — the D,®(x) transforms under

the local SU(N) symmetry exactly like the ®(z) itself.

(b) Verify the Leibniz rule for covariant derivatives of matrix products. Let ®(z) and

Z(x) be two adjoint multiplets while ¥(z) is a fundamental multiplet and ¥f(z) is



its hermitian conjugate (row vector of V7). Show that
D, (®Z) = (D,Q)E + ®(D,2),
Du(®V) = (Du®)¥ + (D,W), (6)
D,(V'E) = (D, ¥z + wi(D,=).

(c¢) Show that for an adjoint multiplet ®(z),
[Dpy Dy @(x) = il Fpu(2), ®(2)] = ig[Fu (), ®(z)] (7)

or in components [D,,, D, |®%(z) = —gf“chﬁy(x)q)C(x).

e In my notations A, and F},, are canonically normalized fields while A, = gA, and

Fuv = gF,, are normalized by the symmetry action.

In class, I have argued (using covariant derivatives) that the tension fields 7, (z) them-
selves transform according to eq. (3). In other words, the 7}, (z) form an adjoint multiplet

of the SU(N) symmetry group.

(d) Verify the ), (z) = U(z)Fpu (2)U T(z) transformation law directly from the definition

Fuw def 0y Ay —0, A+ A, A,] and the non-abelian gauge transform of the A, fields.

(e) Verify the Bianchi identity for the non-abelian tension fields F,, (z):

Note the covariant derivatives in this equation.

Finally, consider the SU(N) Yang—Mills theory — the non-abelian gauge theory that does
not have any fields except A%(x) and F*(x); its Lagrangian is

1
a
(f) Show that the Euler-Lagrange field equations for the Yang—Mills theory can be writ-
ten in covariant form as D, F* = 0.

Hint: first show that for an infinitesimal variation 6.A,(z) of the non-abelian gauge

fields, the tension fields vary according to 6., (z) = D,0A,(z) — Dy,0Au(z).



2. Continuing the previous problem, consider an SU(N) gauge theory in which N2 —1 vector

fields A (z) interact with some “matter” fields ¢q(x),

1
L = —Q—gz tr(FMV.FMU) + Lmat(¢aDu¢)- (10)

For the moment, let me keep the matter fields completely generic — they can be scalars,
or vectors, or spinors, or whatever, and form any kind of a multiplet of the local SU(N)
symmetry as long as such multiplet is complete and non-trivial. All we need to know
right now is that there are well-defined covariant derivatives D, ¢ that depend on the

gauge fields Aj, which give rise to the currents

. aﬁmat

Jor = = (11)
0Ag

Collectively, these N2 — 1 currents should form an adjoint multiplet J# = Za(%)\“)J ap
of the SU(N) symmetry.

(a) Show that in this theory the equation of motion for the Aj fields are D, F* = J%
and that consistency of these equations requires require the currents to be covariantly

conserved,
D,J* = 0,J" + i[A,, J!'] = 0, (12)
or in components, 9, J* — f“bCAZJC” =0.

Note: a covariantly conserved current does not lead to a conserved charge,
(d/dt) [d>x JP(x,t) # 0!

Now consider a simple example of matter fields — a fundamental multiplet ¥(z) of N

scalar fields U;(z), with a Lagrangian

A

Liat = DyUIDFY — m?TTy — Z(qmp)% Loet = Lmat — =5 tr(FuFH). (13)

29
(b) Derive the SU(N) currents J for this set of fields and verify that under SU(N)
symmetries the currents transform covariantly into each other as members of the
adjoint multiplet. That is, the N x N matrix J* = 3 (21%)J% transforms according
to eq. (3).
Hint: for any complex vectors ¥ and ¥/, S (UTATW/ )\ = 20/ @ UT — 2 (UTY/) x 1.



(c) Finally, verify the covariant conservation D, J* of these currents when the scalar

fields ¥, (x) and \I/;r(:t) obey their equations of motion.

3. The last problem is about general multiplets of general gauge groups. Consider a Lie
group G with generators T obeying commutation relations [T“,T b] =1 f‘leTC. Under

an infinitesimal local symmetry
G(z) = 1 4 iA%x)T® + ---, infinitesimal A%(z), (14)
the gauge fields Af () transform as
Aj(z) = Aj(z) — DA (z) = Af(z) — 0uA"(z) — fabCAb(x)AZ(x). (15)

Other fields of the gauge theory (scalar, spinor, or whatever) must form complete mul-
tiplets of the gauge group G. In any such multiplet (m), the generators T are repre-
sented by size(m) X size(m) matrices (T(“m))aﬁ satisfying similar commutation relations,
T (“m), T(bm)] — jfeber (Cm). The fields U, (x) belonging to such multiplet transform under
infinitesimal gauge transforms (14) as

Uolz) = Tale) + iN(2)(T) S V() (16)

(m

and the covariant derivatives D,, act on these fields as

DyWa(r) = 9uWa(x) + iAL(@)(TE,)PWs(x). (17)

e Verify covariance of these derivatives under infinitesimal gauge transforms (14).

* For extra challenge, only for the students familiar with the basic theory of Lie groups:
Prove covariance of the derivatives (17) under finite gauge transforms.

Hint: use Lemma on the next page.



Lemma: For any finite symmetry G € G, the matrix (R(m)(g))f representing this

symmetry in the multiplet (m) satisfies

Bipa \7(p— J b\ 9 pba
(R (D) o (Th) 5 (B () = (T()) o Bas () (18)
where R;’ﬁj(g ) represents G in the adjoint multiplet. Note that the same Rgﬁj(g) appears

on right hand sides of egs. (18) for all multiplets (m) of G — and that’s what allows us
to use the same gauge fields A, (z) to make covariant derivatives (17) for all multiplets

of the gauge group G.



