
PHY–396 K. Problem set #4. Due October 2, 2012.

1. Consider an O(N) symmetric Lagrangian for N interacting real scalar fields,

L =
1

2

N∑
a=1

(
∂µΦa

)2 − m2

2

N∑
a=1

Φ2
a −

λ

24

(
N∑
a=1

Φ2
a

)2

. (1)

By the Noether theorem, the continuous SO(N) subgroup of (N) symmetry gives rise to

1
2N(N − 1) conserved currents

Jµab(x) = −Jµba(x) = Φa(x) ∂µΦb(x)− Φb(x) ∂µΦa(x). (2)

In the quantum field theory, these currents become operators

Ĵab(x, t) = −Ĵba(x, t) = −Φ̂a(x, t)∇Φ̂b(x, t) + Φ̂b(x, t)∇Φ̂a(x, t),

Ĵ0
ab(x, t) = −Ĵ0

ba(x, t) Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t).
(3)

This problem is about the net charge operators

Q̂ab(t) = −Q̂ba(t) =

∫
d3x Ĵ0(x) =

∫
d3x

(
Φ̂a(x, t)Π̂b(x, t) − Φ̂b(x, t)Π̂a(x, t)

)
. (4)

(a) Write down the equal-time commutation relations for the quantum Φ̂a and Π̂a fields.

Also, write down the Hamiltonian operator for the interacting fields.

(b) Show that [
Q̂ab(t), Φ̂c(x, same t)

]
= iδbcΦ̂a(x, t) − iδacΦ̂b(x, t),[

Q̂ab(t), Π̂c(x, same t)
]

= iδbcΠ̂a(x, t) − iδacΠ̂b(x, t),
(5)

(c) Show that the all the Q̂ab commute with the Hamiltonian operator Ĥ. In the Heisen-

berg picture, this makes all the charge operators Q̂ab time independent.
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(d) Verify that the Q̂ab obey commutation relations of the SO(N) generators,

[
Q̂ab, Q̂cd

]
= −iδ[c[b[Q̂a]d] ≡ −iδbcQ̂ad + iδacQ̂bd + iδbdQ̂ac − iδadQ̂bc . (6)

(e) In the Schrödinger picture Φ̂a(x) and Π̂a(x) can be expanded into creation and an-

nihilation operators as if they were free fields. Show that in terms of creation and

annihilation operators, the charges (4) become

Q̂ab =
∑
p

(
−iâ†p,aâp,b + iâ†p,bâp,b

)
. (7)

Finally, for N = 2 the SO(2) symmetry is the phase symmetry of one complex field

Φ = (Φ1 + iΦ2)/
√

2 and its conjugate Φ∗ = (Φ1 − iΦ2)/
√

2. In the Fock space, they give

rise to particles and anti-particles of opposite charges.

(f) Show that for N = 2

Q̂21 = −Q̂12 = N̂particles − N̂antiparticles =
∑
p

(
â†pâp − b̂†pb̂p

)
(8)

where

âp =
âp,1 + iâp,2√

2
are particle annihilation operators,

b̂p =
âp,1 − iâp,2√

2
are antiparticle annihilation operators,

â†p =
â†p,1 − iâ

†
p,2√

2
are particle creation operators,

b̂†p =
â†p,1 + iâ†p,2√

2
are antiparticle creation operators.

(9)
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2. Now consider a massive relativistic vector field Aµ(x) with the Lagrangian density

L = −1
4 FµνF

µν + 1
2m

2AµA
µ − AµJµ (10)

(in h̄ = c = 1 units) where the current Jµ(x) is a fixed source for the Aµ(x) field. Because

of the mass term, the Lagrangian (10) is not gauge invariant. However, we assume that

the current Jµ(x) is conserved, ∂µJ
µ(x) = 0.

In an earlier homework (set 1, problem 1) we have derived the Euler–Lagrange equations

for the massive vector field. In this problem, we develop the Hamiltonian formalism for

the Aµ(x). Our first step is to identify the canonically conjugate “momentum” fields.

(a) Show that ∂L/∂Ȧ = −E but ∂L/∂Ȧ0 ≡ 0.

In other words, the canonically conjugate field to A(x) is −E(x) but the A0(x) does not

have a canonical conjugate! Consequently,

H =

∫
d3x

(
−Ȧ(x) · E(x) − L

)
. (11)

(b) Show that in terms of the A, E, and A0 fields, and their space derivatives,

H =

∫
d3x

{
1
2E

2 + A0 (J0 −∇ · E) − 1
2m

2A2
0 + 1

2 (∇×A)2 + 1
2m

2A2 − J ·A
}
.

(12)

Because the A0 field does not have a canonical conjugate, the Hamiltonian formalism does

not produce an equation for the time-dependence of this field. Instead, it gives us a time-

independent equation relating the A0(x, t) to the values of other fields at the same time t.

Specifically, we have

δH

δA0(x)
≡ ∂H

∂A0

∣∣∣∣
x

− ∇ · ∂H
∂(∇A0)

∣∣∣∣
x

= 0. (13)

At the same time, the vector fields A and E satisfy the Hamiltonian equations of motion,

∂

∂t
A(x, t) = − δH

δE(x)

∣∣∣∣
t

≡ −
[
∂H
∂E
− ∇i

∂H
∂(∇iE)

]
(x,t)

,

∂

∂t
E(x, t) = +

δH

δA(x)

∣∣∣∣
t

≡ +

[
∂H
∂A
− ∇i

∂H
∂(∇iA)

]
(x,t)

.

(14)

(c) Write down the explicit form of all these equations.
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(d) Verify that the equations you have just written down are equivalent to the relativistic

Euler–Lagrange equations for the Aµ(x), namely

(∂µ∂µ +m2)Aν = ∂ν(∂µA
µ) + Jν (15)

and hence ∂µA
µ(x) = 0 and (∂ν∂ν +m2)Aµ = 0 when ∂µJ

µ ≡ 0, cf. homework #1.

3. Next, let’s quantize the massive vector fields. Since classically the −E(x) fields are canon-

ically conjugate momenta to the A(x) fields, the corresponding quantum fields Ê(x) and

Â(x) satisfy the canonical equal-time commutation relations

[Âi(x, t), Âj(y, t)] = 0,

[Êi(x, t), Êj(y, t)] = 0,

[Âi(x, t), Êj(y, t)] = −iδijδ(3)(x− y)

(16)

(in the h̄ = c = 1 units). The currents also become quantum fields Ĵµ(x, t), but they

are composed of some kind of charged degrees of freedom rather than the vector fields

in question. Consequently, at equal times the currents Ĵµ(x, t) commute with both the

Ê(y, t) and the Â(y, t) fields.

The classical A0(x, t) field does not have a canonical conjugate and its equation of motion

does not involve time derivatives. In the quantum theory, Â0(x, t) satisfies a similar time-

independent constraint

m2Â0(x, t) = Ĵ0(x, t) − ∇ · Ê(x, t), (17)

but from the Hilbert space point of view this is an operatorial identity rather than an

equation of motion. Consequently, the commutation relations of the scalar potential field

follow from eqs. (16); in particular, at equal times the Â0(x, t) commutes with the Ê(y, t)

but does not commute with the Â(y, t).

4



Finally, the Hamiltonian operator follows from the classical eq. (12), namely

Ĥ =

∫
d3x

{
1
2Ê

2 + Â0

(
Ĵ0 −∇ · Ê

)
− 1

2m
2Â2

0 + 1
2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
=

∫
d3x

{
1
2Ê

2 +
1

2m2

(
Ĵ0 −∇ · Ê

)2
+ 1

2

(
∇× Â

)2
+ 1

2m
2Â2 − Ĵ · Â

}
(18)

where the second line follows from the first and eq. (17).

Your task is to calculate the commutators [Âi(x, t), Ĥ] and [Êi(x, t), Ĥ] and write down

the Heisenberg equations for the quantum vector fields. Make sure those equations are

similar to the Hamilton equations for the classical fields.
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