
PHY–396 K. Problem set #5. Due October 9, 2008.

1. First, an exercise in bosonic commutation relations

[âα, âβ] = 0, [â†α, â
†
β] = 0, [âα, â

†
β] = δαβ . (1)

(a) Calculate the commutators [â†αâβ, â
†
γ ], [â†αâβ, âδ], [â†αâβ, â

†
γ âδ], and [â†αâ

†
β âγ âδ, â

†
µâν ].

(b) For a single pair of â and â† operators, show that for any analytic function f(x) =

f0 + f1x+ f2x
2 + · · ·,

[â, f(â†)] = +f ′(â†) and [â†, f(â)] = −f ′(â) (2)

where f(â)
def
= f0 + f1â + f2(â)2 + · · · and likewise f(â†)

def
= f0 + f1â

† + f2(â
†)2 + · · ·.

(c) Show that ecâ â†e−câ = â† + c, ecâ
†
âe−câ

†
= â − c, and hence for any analytic function

f ,

ecâf(â†)e−câ = f(â† + c) and ecâ
†
f(â)e−câ

†
= f(â − c). (3)

(d) Now generalize (b) and (c) to any set of creation and annihilation operators â†α and

âα. Show that for any analytic function f(multiple â†α) of creation operators but not

of the annihilation operators or a function f(multiple âα) of the annihilation operators

but not of the creation operators,

[âα, f(â†)] = +
∂f(â†)

∂â†α
, [â†α, f(â)] = −∂f(â)

∂âα
,

exp
(∑

α
cαâα

)
f(â†) exp

(
−
∑

α
cαâα

)
= f(each â†α → â†α + cα),

exp
(∑

α
cαâ
†
α

)
f(â) exp

(
−
∑

α
cαâ
†
α

)
= f(each âα → âα − cα).

(4)
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2. An operator acting on identical bosons can be described in terms of N–particle wave

functions (the first-quantized formalism) or in terms of creation and annihilation operators

in the Fock space (the second-quantized formalism). This exercise is about converting the

operators from one formalism to another.

The keys to this conversion are single-particle wave functions φα(x) of states |α〉 and

symmetrized N -particle states wave functions

φαβ···ω(x1,x2 . . . ,xN ) =
1√
D

distinct permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

=
1

T
√
D

all permutations
of (α,β,...,ω)∑
(α̃,β̃,...,ω̃)

φα̃(x1)× φβ̃(x2)× · · · × φω̃(xN )

(5)

of N -boson states |α, β, . . . , ω〉. In eqs. (5), D is the number of distinct permutations of

single-particle states (α, β, . . . , ω) and T is the number of trivial permutations. (A trivial

permutation permutes states that happen to be the same, a distinct permutation permutes

different states only.) In terms of the occupation numbers nγ ,

T =
∏
γ

nγ ! , D =
N !

T
. (6)

(a) Consider a generic N -particle quantum state |N ;ψ〉 with a totally symmetric wave-

function Ψ(x1, . . . ,xN ). Show that the (N + 1)–particle state |N + 1, ψ′〉 = â†α |N ;ψ〉
has wave function

ψ′(x1, . . . ,xN+1) =
1√
N + 1

N+1∑
i=1

φα(xi)× ψ(x1, . . . , 6xi, . . . ,xN+1). (7)

Hint: First prove this for wave-functions of the form (5). Then use the fact that states

|α1, . . . , αN 〉 form a complete basis of the N -boson Hilbert space.
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(b) Show that the (N − 1)–particle state |N − 1, ψ′′〉 = âα |N ;ψ〉 has wave-function

ψ′′(x1, . . . ,xN−1) =
√
N

∫
d3xN φ

∗
α(xN )× ψ(x1, . . . ,xN−1,xN ). (8)

Hint: the âα is the hermitian conjugate of the â†α, so for any |N − 1, ψ̃〉,
〈N − 1, ψ̃| âα |N,ψ〉 = 〈N,ψ| â†α |N − 1, ψ̃〉∗.

Next, consider one-body operators, i.e. additive operators acting on one particle at a time.

In the first-quantized formalism they act on N–particle states according to

Â
(1)
net =

N∑
i=1

Â1(i
th particle) (9)

where Â1 is some kind of a one-particle operator (such as momentum p̂, or kinetic energy

1
2m p̂2, or potential V (x̂), etc., etc.). In the second-quantized formalism such operators

become

Â
(2)
net =

∑
α,β

〈α| Â1 |β〉 â†αâβ . (10)

(c) Verify that the two operators have the same matrix elements between any two N -boson

states |N,ψ〉 and |N, ψ̃〉, 〈N, ψ̃| Â(1)
net |N,ψ〉 = 〈N, ψ̃| Â(2)

net |N,ψ〉.
Hint: use Â1 =

∑
α,β |α〉 〈α| Â1 |β〉 〈β|.

(d) Now let Â
(2)
net, B̂

(2)
net, and Ĉ

(2)
net be three second-quantized net one-body operators corre-

sponding to the single-particle operators Â1, B̂1, and Ĉ1. Show that if Ĉ1 = [Â1, B̂1]

then Ĉ
(2)
net =

[
Â
(2)
net, B̂

(2)
net

]
.

Finally, consider two-body operators, i.e. additive operators acting on two particles at a

time. Given a two-particle operator B̂2 — such as V (x̂1 − x̂2) — the net B operator acts

in the first-quantized formalism according to

B̂
(1)
net = 1

2

∑
i6=j

B̂2(i
th and jth particles), (11)

and in the second-quantized formalism according to

B̂
(2)
net = 1

2

∑
α,β,γ,δ

(〈α| ⊗ 〈β|)B̂2(|γ〉 ⊗ |δ〉) â†αâ
†
β âγ âδ . (12)
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(e) Again, show these two operators have the same matrix elements between any two

N -boson states, 〈N, ψ̃| Â(1)
net |N,ψ〉 = 〈N, ψ̃| Â(2)

net |N,ψ〉 for any 〈N, ψ̃| and |N,ψ〉.

(f) Now let Â1 be a one-particle operator, let B̂2 and Ĉ2 be two-body operators, and let

Â
(2)
net, B̂

(2)
net, and Ĉ

(2)
net be the corresponding second-quantized operators according to

eqs. (10) and (12).

Show that if Ĉ2 =
[(
Â1(1

st) + Â1(2
nd)
)
, B̂2

]
then Ĉ

(2)
net =

[
Â
(2)
net, B̂

(2)
net

]
.

3. The rest of this homework is about coherent states of harmonic oscillators and free quantum

fields. Let us start with a harmonic oscillator with Hamiltonian Ĥ = h̄ωâ†â.

(a) For any complex number ξ we define a coherent state |ξ〉 def= exp
(
ξâ† − ξ∗â

)
|0〉. Show

that

|ξ〉 = e−|ξ|
2/2 eξâ

†
|0〉 and â |ξ〉 = ξ |ξ〉 . (13)

(b) Use â |ξ〉 = ξ |ξ〉 to show that the (coordinate-space) wave function of a coherent

state |ξ〉 is a Gaussian wave packet of the same width as the ground state |0〉. Also,

show that the central position x̄ and the central momentum p̄ of this packet are related

to the real and the imaginary parts of ξ,

x̄ =

√
2h̄

ωm
× Re ξ, p̄ =

√
2h̄ωm× Im ξ, ξ =

mωx̄ + ip̄√
2mωh̄

. (14)

(c) Use â |ξ〉 = ξ |ξ〉 and 〈ξ| â† = ξ∗ 〈ξ| to calculate the uncertainties ∆x and ∆p in a

coherent state and verify their minimality: ∆x∆p = 1
2 h̄. Also, verify δn =

√
n̄ where

n̄
def
= 〈n̂〉 = |ξ|2.

The coherent states are not stationary, they evolve with time but stay coherent — a

coherent state |ξ0〉 at time t = 0 becomes |ξ(t)〉 at later times — while the central position

x̄ and p̄ of the wave packet move according to the classical equations of motion for the

harmonic oscillator.
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(d) Check that such classical motion calls for ξ(t) = ξ0 × e−iωt, then check that the

corresponding coherent state |ξ(t)〉 obeys the time-dependent Schrödinger equation

ih̄ d
dt |ξ(t)〉 = Ĥ |ξ(t)〉.

(e) The coherent states are not quite orthogonal to each other.

Calculate their probability overlaps |〈η|ξ〉|2.

Now consider the coherent states of multi-oscillator systems such as quantum fields. In

particular, let us focus on the creation and annihilation fields Ψ̂†(x) and Ψ̂(x) for non-

relativistic spinless bosons.

(f) Generalize (a) and construct coherent states |Φ〉 which satisfy

Ψ̂(x) |Φ〉 = Φ(x) |Φ〉 (15)

for any given classical complex field Φ(x).

(g) Show that for any such coherent state, ∆N =
√
N̄ where

N̄
def
= 〈Φ| N̂ |Φ〉 =

∫
dx |Φ(x)|2. (16)

(h) Let the Hamiltonian for the quantum non-relativistic fields be

Ĥ =

∫
dx

(
h̄2

2M
∇Ψ̂†(x) · ∇Ψ̂(x) + V (x)× Ψ̂†(x)Ψ̂(x)

)
. (17)

Show that for any classical field configuration Φ(x, t) obeying the classical field equa-

tion

ih̄
∂

∂t
Φ(x, t) =

(
− h̄2

2M
∇2 + V (x)

)
Φ(x, t), (18)

the time-dependent coherent state |Φ〉 (t) satisfies the true Schrödinger equation

ih̄
d

dt
|Φ〉 = Ĥ |Φ〉 . (19)

(i) Finally, show that the quantum overlap |〈Φ1|Φ2〉|2 between two different coherent

states is exponentially small for any macroscopic difference δΦ(x) = Φ1(x) − Φ2(x)

between the two field configurations.
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