PHY-396 K. Problem set #5. Due October 9, 2008.

1. First, an exercise in bosonic commutation relations
(@arigl = 0, fal,al] = 0, [aga}] = Ga. (1)

T

(a) Calculate the commutators [dadﬂ,dg], [&gdﬂ,dé], [deﬁ,dl;d(s], and [dL

aliin g, ).
(b) For a single pair of & and a' operators, show that for any analytic function f(z) =

fo+ fix+ fox® +- -,
la, f(ah)] = +f'@a") and [af,f(a)] = —f'(a) (2)

where f(a) % fo+ fia + fo(a)? + - - and likewise f(al) < fo + fraf + fo(ah)2 +---.

(¢) Show that e“®afe=@ = af + ¢, et ge—cd’

f

= a — ¢, and hence for any analytic function

t

e f(ah)e e = fal+¢) and €@ fla)e™® = f(a— o). (3)

(d) Now generalize (b) and (c) to any set of creation and annihilation operators al, and

4. Show that for any analytic function f(multiple d];) of creation operators but not
of the annihilation operators or a function f(multiple a4 ) of the annihilation operators

but not of the creation operators,

0@

Ditg
exp (Za cada) fah) exp (— Za ca&a) = f(each af — af + ca), (4)
exp (Za caag) (@) exp (— > caag) — f(each &, — @, — ca).

)



2. An operator acting on identical bosons can be described in terms of N-—particle wave
functions (the first-quantized formalism) or in terms of creation and annihilation operators
in the Fock space (the second-quantized formalism). This exercise is about converting the

operators from one formalism to another.

The keys to this conversion are single-particle wave functions ¢,(x) of states |a) and

symmetrized N-particle states wave functions

distinct permutations

of (a,f,...,w)
> Ga(x1) X d5(x2) X -+ X Pa(xn)
(&,8,...,.2)

all permutations

1 of (a,B,...,w)

oY el x dgn) o x dalx)

Sl-

¢a5...w(X1, X9 ... 7XN) =

(G,B,....@)

of N-boson states |a, 3,...,w). In egs. (5), D is the number of distinct permutations of
single-particle states (o, 3, ...,w) and T" is the number of trivial permutations. (A trivial
permutation permutes states that happen to be the same, a distinct permutation permutes

different states only.) In terms of the occupation numbers n.,

N!
T =1]n', D= (6)
Y

(a) Consider a generic N-particle quantum state |N;v) with a totally symmetric wave-
function ¥(x1,...,xy). Show that the (N + 1)-particle state |N + 1,¢') = @l |N; )

has wave function

N+1
1 +

¢/(X1, . 7XN+1) = \/N:H Z gﬁa(xi) X 1/)(}(1, vy Kiy o ,XN_|_1). (7)

i=1

Hint: First prove this for wave-functions of the form (5). Then use the fact that states

lag, ..., an) form a complete basis of the N-boson Hilbert space.



(b) Show that the (N — 1)-particle state |[N — 1,9") = a4 |N; %) has wave-function
@D//(Xl,...,XN_l) = \/N dSXNgbZ(XN) X @/)(Xl,...,XN_l,XN). (8)

Hint: the a, is the hermitian conjugate of the dg, so for any |N — 1, QZ),
(N = 1,9 da |N,$) = (N, | ak [N = 1,4)".

Next, consider one-body operators, i.e. additive operators acting on one particle at a time.

In the first-quantized formalism they act on N—particle states according to
N
Ar(lle)t = ZAl(ith particle) (9)
i=1

where A; is some kind of a one-particle operator (such as momentum p, or kinetic energy
%f)Q, or potential V(x), etc., etc.). In the second-quantized formalism such operators

become

AR =S (al Ay |8) alag. (10)
a’ﬁ

(c) Verify that the two operators have the same matrix elements between any two N-boson

states [N, ) and |N, §), (N, 0] AL [N, ) = (N, 6] AQ) [N, ).
Hint: use A; = Yapla) (@l A1 18) (8.
(d) Now let A% B&)

nets Bret, and C (2 be three second-quantized net one-body operators corre-

n.
sponding to the single-particle operators 1211, B’l, and C;. Show that if Cj = [1211, Bl]
then CL2) = [42), 5]

Finally, consider two-body operators, i.e. additive operators acting on two particles at a

time. Given a two-particle operator Eg — such as V(x; — X2) — the net B operator acts

in the first-quantized formalism according to

Bl(lg = %Z By (i*h and ;7' particles), (11)
i#]
and in the second-quantized formalism according to

BE = 13 ((al® (8))Ba(ly) ®18)) afala, (12)
a,B,7,0



(e)

(f)

Again, show these two operators have the same matrix elements between any two

N-boson states, (N, | AL [N, ¢) = (N, d| A?) [N, %) for any (N, | and | N, ¥).

Now let A; be a one-particle operator, let By and Cs be two-body operators, and let

~

A® B@ g a@

net> net’ net

egs. (10) and (12).

be the corresponding second-quantized operators according to

Show that if Cy = [(Alust) +A1(2nd)> ,BQ] then 1) = [A(Q) B@)].

net — net’ “net

3. The rest of this homework is about coherent states of harmonic oscillators and free quantum

fields. Let us start with a harmonic oscillator with Hamiltonian H = hwa'a.

(a)

(b)

For any complex number £ we define a coherent state |€) dof exp (de — f*&) |0). Show
that

€) = 28800y and ale) = €le). (13)

Use a|€) = £|€) to show that the (coordinate-space) wave function of a coherent
state |£) is a Gaussian wave packet of the same width as the ground state |0). Also,
show that the central position Z and the central momentum p of this packet are related

to the real and the imaginary parts of &,

oh F 4 ip
7= /L xRet, p = Vohwom xImé, ¢ = DLW (14)
wm

2mwh

Use a|¢) = €|¢) and (¢]al = €* (€] to calculate the uncertainties Az and Ap in a
coherent state and verify their minimality: AzAp = %h. Also, verify dn = v/n where

n < () = [¢P.

The coherent states are not stationary, they evolve with time but stay coherent — a

coherent state |£p) at time ¢ = 0 becomes [£(¢)) at later times — while the central position

Z and p of the wave packet move according to the classical equations of motion for the

harmonic oscillator.



(d) Check that such classical motion calls for £(t) = & x e ™! then check that the

corresponding coherent state |£(t)) obeys the time-dependent Schrédinger equation
ihg €(1)) = H[E(D)).

(e) The coherent states are not quite orthogonal to each other.
Calculate their probability overlaps |(n|¢ )|2

Now consider the coherent states of multi-oscillator systems such as quantum fields. In
particular, let us focus on the creation and annihilation fields ¥f(x) and ¥(x) for non-

relativistic spinless bosons.

(f) Generalize (a) and construct coherent states |®) which satisfy
U(x)[0) = (x)|P) (15)

for any given classical complex field ®(x).

(g) Show that for any such coherent state, AN = v'N where

N ¥ (@ N|o) :/dx|<1>(x)|2. (16)

(h) Let the Hamiltonian for the quantum non-relativistic fields be
. B2 . . .
H = [dx quﬁ(x) VU(x) + V(x) x U(x)U(x) | . (17)

Show that for any classical field configuration ®(x,t) obeying the classical field equa-

tion

2
@'h%fb(x,t) _ (—;LWV2+V(X)> B(x, 1), (18)

the time-dependent coherent state |®) (¢) satisfies the true Schrodinger equation

d -
ih—|®) = H|®). (19)

(i) Finally, show that the quantum overlap |(®1]|®2)|*> between two different coherent
states is exponentially small for any macroscopic difference §®(x) = ®1(x) — P2(x)

between the two field configurations.



