
PHY–396 K. Problem set #6. Due October 16, 2007.

1. When an exact symmetry of a quantum field theory is spontaneously broken down, it gives

rise to exactly massless Goldstone bosons. But when the spontaneously broken symmetry

was only approximate to begin with, the would-be Goldstone bosons are no longer ex-

actly massless but only relatively light. The best-known examples of such pseudo-Goldstone

bosons are the pi-mesons π± and π0, which are indeed much lighter then other hadrons. The

Quantum ChromoDynamics theory (QCD) of strong interactions has an approximate chiral

isospin symmetry SU(2)L × SU(2)R ∼= Spin(4). This symmetry would be exact if the two

lightest quark flavors u and d were massless; in real life, the masses mu and md are small

but non quite zero, and the symmetry is only approximate. Somehow (and people are still

arguing how), the chiral isospin symmetry is spontaneously broken down to the ordinary

isospin symmetry SU(2) ∼= Spin(3), and the 3 generators of the broken Spin(4)/Spin(3) give

rise to 3 (pseudo) Goldstone bosons π± and π0.

QCD is a rather complicated theory, so it is often convenient to describe the physics of the

spontaneously broken chiral symmetry in terms of a simpler theory with similar symmetries.

For example, the linear sigma model is a theory of 4 real scalar fields, an isosinglet σ(x) and

an isotriplet π˜(x) comprising π1(x), π2(x) and π3(x) (or equivalently, π0(x) ≡ π3(x) and

π±(x) ≡
(
π1(x)± iπ2(x)

)
/
√

2). The Lagrangian

L = 1
2(∂µσ)2 + 1

2(∂µπ˜)2 − λ

8

(
σ2 + π˜2 − f2)2 + βλf2 × σ (1)

is invariant under the SO(4) rotations of the four fields, except for the last term which we

treat as a perturbation. In class we saw that for β = 0 this theory has SO(4) spontaneously

broken to SO(3) and hence 3 massless Goldstone bosons — the pions. In this exercise, we

let β > 0 but β � f to show how this leads to pions being massive but light.

(a) Show that the scalar potential of the linear sigma model with β > 0 has a unique

minimum at

〈π˜〉 = 0 and 〈σ〉 = f + β + O(β2/f). (2)

(b) Expand the fields around this minimum and show that the pions are light while the σ

particle is much heavier. Specifically, M2
π ≈ λfβ while M2

σ ≈ λf(f + β) ≈ λf2 �M2
π .
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2. In this problem the spontaneously broken symmetry is exact but more complicated. Consider

an N ×N matrix Φ(x) of complex scalar fields Φi
j(x), i, j = 1, . . . , N . In matrix notations,

the Lagrangian is

L = tr
(
∂µΦ† ∂µΦ

)
− V (Φ†Φ) (3)

where the potential is

V =
α

2
tr
(

Φ†ΦΦ†Φ
)

+
β

2

(
tr
(

Φ†Φ
))2

+ m2 tr
(

Φ†Φ
)
. (4)

(a) Show that this theory has global symmetry group G = SU(N)L × SU(N)R × U(1)

acting as

Φ(x) → eiθULΦ(x)U †R, UL, UR ∈ SU(N). (5)

(?) Optional exercise, only for experts in group theory:

Show that the theory has no other continuous symmetries besides G and Poincare

(Lorentz and translations of spacetime).

From now on, we take α, β > 0 but m2 < 0. In this regime, V is minimized for non-zero

vacuum expectation values 〈Φ〉 6= 0 of the scalar fields.

(b) Let (κ1, . . . , κN ) be eigenvalues of the hermitian matrix Φ†Φ. Express the potential (4)

in terms of these eigenvalues and show that the minimum lies at

κ1 = κ2 = · · · = κN = C2 =
−m2

α +Nβ
> 0. (6)

In terms of the matrix Φ, eq. (6) means Φ = C × a unitary matrix. All such minima are

related by symmetries (5) to Ψ = C × the unit matrix, so without loss of generality we may

assume that the vacuum lies at

〈Φ〉 = C × 1N×N i. e.
〈
Φi
j

〉
= C × δij . (7)

(c) Show that in this vacuum, the symmetry group of the theory is spontaneously broken

down to SU(N); in terms of eq. (5), the unbroken symmetries have UL = UR ∈ SU(N)

and θ = 0.
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Let’s expand the theory around the vacuum (7). For convenience, let’s also decompose the

complex matrix Φ into its hermitian and anti-hermitian parts,

Φ(x) = C × 1N×N +
ϕ1(x) + i ϕ2(x)√

2
where ϕ†1 ≡ ϕ1 and ϕ†2 ≡ ϕ2 . (8)

(d) Expand the Lagrangian in powers of ϕ1 and ϕ2 and use the quadratic part L2 to

determine the particle spectrum of the theory.

(e) Check the quantum numbers of the massless particles and verify that they agree with

the Nambu–Goldstone theorem for the spontaneously broken symmetries of the theory.

3. Now let’s gauge the SU(N)L×SU(N)R×U(1) symmetry of the previous problem. Naturally,

this requires abelian gauge fields Bµ(x) and non-abelian matrix-valued gauge fields Lµ(x)

and Rµ(x); in components, Lµ(x) =
∑

a
1
2λ

a × Laµ(x) and Rµ(x) =
∑

a
1
2λ

a × Raµ(x) where

a = 1, . . . , (N2 − 1) and λa are the Gell–Mann matrices of SU(N). The Lagrangian now is

L = −1
4BµνB

µν − 1
2 tr (LµνL

µν) − 1
2 tr (RµνR

µν) + tr
(
DµΦ†DµΦ

)
− V (Φ†Φ) (9)

where the scalar potential V is as in eq. (4), and

Bµν = ∂µBν − ∂νBµ ,

Lµν = ∂µLν − ∂νLµ + ig[Lµ, Lν ],

Rµν = ∂µRν − ∂νRµ + ig[Rµ, Rν ],

DµΦ = ∂µΦ + ig′BµΦ + igLµΦ − igΦRµ ,

DµΦ† = (DµΦ)† = ∂µΦ† − ig′BµΦ† + igRµΦ† − igΦ†Lµ .

(10)

For simplicity, I assume equal gauge couplings gL = gR = g for the two SU(N) factors of

the gauge group, but the abelian coupling g′ is different.

As in the previous problem, we take α, β > 0 but m2 < 0 so the scalar’s vacuum expectation

values 〈Φ〉 are as in eq. (7), and the SU(N)L × SU(N)R × U(1) gauge symmetry is broken

down to SU(N).
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(a) Write down the mass matrix for the vector fields. Show that Bµ and Xa
µ = 1√

2
(Laµ−Raµ)

vectors become massive while V a
µ = 1√

2
(Laµ +Raµ) remain massless.

(b) Find the effective Lagrangian for the massless vector fields V a
µ (x) by freezing all the other

fields, i.e. setting Φ(x) ≡ 〈Φ〉, Bµ(x) ≡ 0 and Xa
µ(x) ≡ 0. Show that this Lagrangian

describes a Yang–Mills theory with gauge group SU(N)V and gauge coupling gV =

g/
√

2.

(c) In the unitary gauge for the broken gauge symmetries the Φ(x) scalar field matrix is

hermitian, Φ†(x) ≡ Φ(x), or in terms of eq. (8) φ2(x) ≡ 0. To show that this is a good

gauge condition, show that: (1) it fixes all the broken gauge symmetries but does not fix

the un-broken symmetries, and (2) any Φ(x) is gauge-equivalent to a hermitian Φ′(x)

via a non-singular gauge transform.

(d) Finally, rewrite the whole Lagrangian (9) in terms of fields of definite mass — Vµ, Xµ,

Bµ and δΨ — and their derivatives that are covariant with respect to the unbroken

SU(N)V . For simplicity, fix the unitary gauge.
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