
PHY–396 K. Problem set #7. Due October 25, 2012 (Thursday).

1. Quantum mechanics of a fixed number of relativistic particles does not work (except as an

approximation) because of problems with relativistic causality. Indeed, consider a single

free relativistic spinless particle with Hamiltonian

Ĥ = +

√
M2 + P̂2 (1)

(in the c = h̄ = 1 units). In the coordinate picture, this Hamiltonian is a horrible integro-

differential operator, but that’s only a technical problem. The real problem concerns the

time evolution kernel

U(x− y; t) = 〈x, t|y, t0 = 0〉Heisenberg
picture = 〈x| exp(−itĤ) |y〉Schroedingerpicture . (2)

(a) Show that

U(x−y; t) =

∫
d3k

(2π)3
exp
(
ik(y−x)−iω(k)t

)
=
−i

4π2 r

+∞∫
−∞

dk k exp
(
irk−itω(k)

)
(3)

where ω(k) =
√
M2 + k2 and r = |x− y|.

(b) Take the limit t → +∞, r → ∞ while the ratio r/t stays fixed. Specifically, let

(r/t) < 1 so we stay inside the future light cone.

Show that in this limit, the evolution kernel becomes

U(x− y; t) ≈ (−iM)3/2

4π3/2
t

(t2 − r2)5/4
× exp(−iM

√
t2 − r2). (4)

Hint: Use the saddle point method to evaluate the integral (3). If you are not familiar

with this method — or with any of the related methods for approximating integrals of

the form
∫
dx f(x) × exp

(
−Ag(x)

)
for A → ∞ — read my notes on the saddle-point

method. Those notes were originally written for a QM class so they include the Airy

function example; you do not need that example, just the method itself.
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(c) Finally, take a similar limit but go outside the light cone, thus fixed (r/t) > 1 while

r, t→ +∞. Show that in this limit, the kernel becomes

U(x− y; t) ≈ iM3/2

4π3/2
t

(r2 − t2)5/4
× exp(−M

√
r2 − t2). (5)

Hint: again, use the saddle point method.

Eq. (5) shows that the kernel diminishes exponentially outside the light cone, but it does

not vanish! Thus, given a particle localized at point y at the time t0 = 0, after time

t > 0, its wave function is mostly limited to the future light cone r < t, but there is an

exponential tail outside the light cone. In other words, the probability of superluminal

motion is exponentially small but non-zero.

Obviously, such superluminal propagation cannot be allowed in a consistently relativistic

theory. And that’s why relativistic quantum mechanics of a single particle is inconsistent.

Likewise, relativistic quantum mechanics of any fixed number of particles does not work,

except as an approximation.

In the quantum field theory, this paradox is resolved by allowing for creation and annihi-

lation of particles. Quantum field operators acting at points x and y outside each others’

lightcones can either create a particle at x and then annihilate it at y, or else annihilate it

at y and then create it at x. I will show in class that the two effects precisely cancel each

other, so altogether there is no propagation outside the light cone. That’s how relativistic

QFT is perfectly causal while the relativistic QM is not.

2. The second problem is about the quantum massive vector field Aµ(x) and its expansion

into creation and annihilation operators. The massive vector field has appeared in two

previous homeworks: in set#1 you’ve derived its equation of motion from the Lagrangian,

while in set#4 you’ve developed the Hamiltonian formalism and quantized the field. For

the present exercise you will need the equal-times commutation relations of the quantum

fields,

[Âi(x), Âj(y)] = 0, [Êi(x), Êj(y)] = 0, [Âi(x), Êj(y)] = −iδijδ(3)(x− y) (6)
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(in h̄ = 1, c = 1 units), the Hamiltonian operator

Ĥ =

∫
d3x

(
1
2Ê

2 +
(∇ · Ê)2

2m2
+ 1

2(∇× Â)2 + 1
2m

2Â2

)
. (7)

for the free fields (i.e., for Ĵµ(x) ≡ 0), and the operatorial identity

Â0(x) = −∇ · Ê(x)

m2
(8)

(again, for Ĵ0(x) ≡ 0).

In general, a QFT has a creation operator â†k,λ and an annihilation operator âk,λ for

each plane wave with momentum k and polarization λ. The massive vector fields have 3

independent polarizations corresponding to 3 orthogonal unit 3–vectors. One may use any

basis of 3 such vectors eλ(k), and it’s often convenient to make them k–dependent and

complex; in the complex case, orthogonality+unit length mean

eλ(k) · e∗λ′(k) = δλ,λ′ . (9)

Of particular convenience is the helicity basis of eigenvectors of the vector product ik × ,

namely

ik× eλ(k) = λ|k|eλ(k), λ = −1, 0,+1. (10)

By convention, the phases of the complex helicity eigenvectors are chosen such that

e0(k) =
k

|k|
, e∗±1(k) = −e∓1(k), eλ(−k) = −e∗λ(+k). (11)

As a first step towards constructing the âk,λ and â†k,λ operators, we Fourier transform

the vector fields Â(x) and Ê(x) and then decompose the vectors Âk and Êk into helicity

3



components,

Â(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Âk,λ , Âk,λ =

∫
d3x e−ikxe∗λ(k) · Â(x),

Ê(x) =

∫
d3k

(2π)3

∑
λ

eikxeλ(k) Êk,λ , Êk,λ =

∫
d3x e−ikxe∗λ(k) · Ê(x).

(12)

(a) Show that Â†k,λ = −Â−k,λ, Ê†k,λ = −Ê−k,λ, and derive the equal-time commutation

relations for the Âk,λ and Êk,λ operators.

(b) Show that

Ĥ =

∫
d3k

(2π)3

∑
λ

(
Ck,λ

2
Ê†k,λÊk,λ +

ω2
k

2Ck,λ
Â†k,λÂk,λ

)
(13)

where ωk =
√
k2 +m2 and Ck,λ = 1 + δλ,0(k

2/m2).

(c) Define creation and annihilation operators according to

âk,λ =
ωkÂk,λ − iCk,λÊk,λ√

Ck,λ
, â†k,λ =

ωkÂ
†
k,λ + iCk,λÊ

†
k,λ√

Ck,λ
, (14)

and verify that they satisfy equal-time bosonic commutation relations (relativistically

normalized).

(d) Show that

Ĥ =

∫
d3k

(2π)3 2ωk

∑
λ

ωk â
†
k,λâk,λ + const. (15)

(e) Next, consider the time dependence of the free vector field in the Heisenberg picture.

Show that

Â(x, t) =

∫
d3k

(2π)3 2ωk

∑
λ

√
Ck,λ

(
e−ikxeλ(k) âk,λ(0) + e+ikxe∗λ(k) â†k,λ(0)

)
k0=+ωk

.

(16)

(f) Use eq. (8) to write down a similar formula for the Â0(x, t). (use eq. (8)).
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(g) Combine the results of parts (e) and (f) into a relativistic formula for the 4–vector

field Âµ(x), namely

Âµ(x) =

∫
d3k

(2π)32ωk

∑
λ

(
e−ikxfµ(k, λ) âk,λ(0) + e+ikxf∗µ(k, λ) â†k,λ(0)

)
k0=+ωk

(17)

where the 4–vectors fµ(k, λ) obtain by Lorentz boosting of purely-spatial polarization

vectors eλ(k) into the moving particle’s frame. Specifically,

fµ(k, λ) =


(
0, eλ(k)

)
for λ = ±1,(

|k|
m ,

ωk

m
k
|k|

)
for λ = 0,

(18)

and they satisfy

kµf
µ
k,λ = 0, fµk,λ

(
f∗k,λ′

)
µ

= −δλ,λ′ . (19)

(h) Finally, verify that the quantum vector field (17) satisfies the free equations of motion

∂µÂ
µ(x) = 0 and (∂2 + m2)Âµ(x) = 0; moreover, each mode in the expansion (17)

satisfies the equations of motions without any help from the other modes.

3. The last problem concerns the Feynman propagator for the massive vector field. I recom-

mend you do this problem after I explain the scalar field’s Feynman propagator in class on

Thursday 10/18 and Tuesday 10/23. Meanwhile, start working on the problems 1 and 2

of this set!

(a) First, a lemma: Show that∑
λ

fµ(k, λ)fν∗(k, λ) = −gµν +
kµkν

m2
. (20)

(b) Next, calculate the “vacuum sandwich” of two vector fields and show that

〈0| Âµ(x)Âν(y) |0〉 =

∫
d3k

(2π)3
1

2ωk

[(
−gµν +

kµkν

m2

)
e−ik(x−y)

]
k0=+ωk

=

(
−gµν − ∂µ∂ν

m2

)
D(x− y).

(21)
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(c) And now, the Feynman propagator: Show that

GµνF ≡ 〈0|T∗Âµ(x)Âν(y) |0〉 =

(
−gµν − ∂µ∂ν

m2

)
Gscalar
F (x− y)

=

∫
d4k

(2π)4

(
−gµν +

kµkν

m2

)
ie−ik(x−y)

k2 −m2 + i0

(22)

where

T∗Âµ(x)Âν(y) = TÂµ(x)Âν(y) +
i

m2
δµ0δν0δ(4)(x− y), (23)

is the modified time-ordered product of the vector fields. The purpose of this modifi-

cation
?

is to absorb the δ(4)(x− y) stemming from the ∂0∂0GF (x− y).

(d) Finally, write the classical action for the free vector field as

S = 1
2

∫
d4xAµ(x)DµνAν(x) (24)

where Dµν is a differential operator and show that the Feynman propagator (22) is a

Green’s function of this operator,

Dµνx GFνλ = +iδµλδ
(4)(x− y). (25)

? See Quantum Field Theory by Claude Itzykson and Jean–Bernard Zuber.
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