PHY-396 K. Problem set #8. Due November 8, 2012.

. First, an exercise in Dirac matrices v#. Please do not assume any specific form of these 4 x 4

matrices, just use the anti-commutation relations
Y A = 29" (1)

and (79)T = 449 while (4)T = — for i = 1,2, 3.
(a) Show that 7*7a = 4,7%7"7a = =27, 17" Ya = 49", and 7"y 7" ya = 277717,
Hint: use y*v" = 2¢"* — 4¥~* repeatedly.

(b) The electron field in the EM background obeys the covariant Dirac equation
(iv*D,, — m)¥(z) = 0 where D, ¥ = 9,V —ieA,¥. Show that this equation implies

(DD" + m* + qF,,S") ¥(x) = 0. (2)

Besides the 4 Dirac matrices v#, there is another useful matrix 7° def iy 0y ly2~3,

(c) Show that 7° anticommutes with each of the v* matrices — v°y* = —y#45 — and

commutes with all the spin matrices S*¥.
(d) Show that 4° is hermitian and that (7°)? = 1.

Show that 7% = (i/24)€r w7 v Py and ylEqrykarl = —244er v 45,

n
(f) Show that v yka¥l = —GieM ~, A5,
) Show that any 4 x 4 matrix I is a unique linear combination of the following 16 matrices:

L, gyl = =205, APy#, and P,
0123 = 1, €pra3 = +1, Yyl = yha? — vt
APAHAT = Al — At g — gAY it — VA ete,

x My conventions here are: €

Now consider Dirac matrices in spacetime dimensions d # 4. Such matrices always satisfy

the Clifford algebra (1), but their sizes depend on d.

Let T' = i"~041 ... 441 be the generalization of the 7° to d dimensions; the pre-factor i" = =i
or +1 is chosen such that I' = T'T and I'2 = +1.



(h) For even d, I" anticommutes with all the v#. Prove this, and use this fact to show that
there are 2% independent products of the 4* matrices, and consequently the matrices

should be 24/2 x 24/2

(i) For odd d, I' commutes with all the I'* — prove this. Consequently, one can set I' = +1

or I' = —1; the two choices lead to in-equivalent sets of the v*.

(Classify the independent products of the v* for odd d and show that their net number

is 29-1: consequently, the matrices should be 2(d=1)/2 ¢ o(d=1)/2,

2. Now let’s go back to d = 3 + 1 and learn about the Weyl spinors and Weyl spinor fields.
Since all the spin matrices S*¥ commute with the v, for all continuous Lorentz symmetries
L%, their Dirac-spinor representations M, (L) = exp(—%@agSo‘ﬂ ) are block-diagonal in the
eigenbasis of the 4°. This makes the Dirac spinor ¥ a reducible multiplet of the continu-
ous Lorentz group SO™(3,1) — it comprises two different irreducible 2-component spinor

multiplets called the left-handed Weyl spinor 17, and the right-handed Weyl spinor ¥ p.
This decomposition becomes clear in the Weyl convention for the Dirac matrices where

_ def
0 ot ol = (1,,,—0),
~H = ( ) where ( e ) (3)

O—/J 0 5“ dif (12x27+0)7

and consequently

s (-1 0 (ML) 0
7 _<0 +1> — MD(L)_( 0 MR(L)>' (4)

(a) Check that the 4° matrix indeed has this form and write down explicit matrices for the

SH in the Weyl convention.
In the Weyl convention

Upirac(z) = (wL(x)’> where vile) = Mi(L)ir(a) (5)
irac ¢R($) wﬁ%<x/) = MR(L)IDR(JI)

(b) Express the Dirac Lagrangian W(iv*9, — m)¥ in terms of the Weyl spinor fields ¢, ()
and Yg(x) (and their conjugates wz(x) and w;r%(x)) and show that for m = 0 the two

Weyl spinor fields become independent from each other.



Now let’s work out the explicit forms of the M, and Mg matrices for the pure rotations and

for the pure boosts.

(c) Show that for a space rotation R through angle ¢ around axis n,
Mp(R) = Mg(R) = exp(—i¢n-0o) € SU(2), (6)

so both the left-handed and the right-handed Weyl spinors ¢;, and i transform as the

ordinary 2-component spinors of the Spin(3) rotation group.

(d) Show that for a Lorentz boost of rapidity r in the direction n
Mp(B) = exp(—3rn-0) while Mpg(B) = exp(+3rn-0). (7)

The rapidity is related to the 5 and 7 parameters of a Lorentz boost as 5 = tanh(r),
v = cosh(r). For two successive boosts in the same directions, the rapidities add up,

ri4+2 = r1 + ro. In terms of the 5 and ~ parameters,

ML:ﬁX\/l—ﬁn-O', MR:\/’_yx\/1+ﬂn~U. (8)

Note that for the boosts M, # Mgk — so the left-handed Weyl spinors transform differ-
ently from the right-handed Weyl spinors — and that both M and Mg are non-unitary.

The LH Weyl spinor and the RH Weyl spinor are two different, in-equivalent multiplets of
the continuous Lorentz symmetry SO (3, 1), or rather Spin(3,1). However, each of them is

equivalent to the complex conjugate of the other spinor multiplet.

(e) Show that for any L € SO (3,1),
Mp = 09Mjoy and M; = o9Mpog, (9)
and consequently 021y, transforms like ¢; while o217 transforms like ¢,

UQ?ﬂE(.T’) = MLUQQME(Z') and O'Qw/ik(l'/) = MRO'QQ/JE(ZL'). (10)



3. The third problem is about the plane-wave solutions e~ P%u(p, s) and e*P*v(p,z) of the
Dirac equation. In all these waves p¥ = +Ep = ++/p? + m? while the 4-component spinors

u(p, s) and v(p, s) satisfy

#—mu(p,s) = 0, (F+m)v(p,s) = 0 (11)

and are normalized to

ul(p, s)u(p,s’) = vl(p,s)o(p,s’) = 2E5,. (12)

Let’s writing down explicit formulae for these spinors in the Weyl basis for the +* matrices.

(a) Show that for p =0,

up=0,s) = (gg) (13)

where £ is a two-component SO(3) spinor encoding the electron’s spin state. The &

are normalized to 5153/ = 05,/

(b) For other momenta, u(p,s) = M (boost)u(p = 0, s) for the boost that turns (m,0) into
p*. Use egs. (8) to show that

by (VPO _ (ymers
e VE+p-0& ) '

puot &s

(c¢) Use similar arguments to show that

o) — [ TVETROm VB (15)
’ —\/E—i-pO'ns — pﬂo',uns

where 7y are two-component SO(3) spinors normalized to 77;773' = 0.9/

Physically, the ns should have opposite spins from & — the holes in the Dirac sea have

opposite spins (as well as p#) from the missing negative-energy particles. Mathematically,

this requires n;rSns = —51855; we may solve this condition by letting ns = 02€} = +ié_;.



(d) Check that this is a solution, then show that it leads to v(p, s) = v2u*(p, s).

(e) Show that for ultra-relativistic electrons or positrons of definite helicity A = :I:%, the
Dirac plane waves become chiral — i.e., dominated by one of the two irreducible Weyl
spinor components ¢ (z) or ¥r(z) of the Dirac spinor W(x) while the other component

becomes negligible. Specifically,

u(p, —3) ~ @<€L>, u(p, +3) ~ Vﬁ(O),

0 . (16)
v(p,—3) ~ —V2E ! , o v(p+d) & @<UR>.

nr 0

Note that for the electrons the helicity and the chirality are both left or both right, but
for the positrons the chirality is opposite from the helicity.

Back in problem 2(b) we saw that for m = 0 the LH and the RH Weyl spinor fields decouple
from each other. Now this exercise show us which particle modes comprise each Weyl spinor:
The () contains the left-handed fermions and the right-handed antifermions, while the

Yr(x) contains the right-handed fermions and the left-handed antifermions.

Finally, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and

v(p, s) — although you may use the Weyl basis to verify them.

(f) Show that
u(p, s)u(p,s’) = +2mdss ., 0(p, s)v(p, s = —2més ¢ ; (17)

note that the normalization here is different from eq. (12) for the u'u and vfv.

(g) There are only two independent SO(3) spinors, hence ), 8l = Y os nins = 1,.,. Use
this fact to show that

Y ualps)ug(ps) = Frmlasg and Y va(ps)05(p,s) = F—m)as.  (18)

s=1,2 s=1,2



4. Next, a little exercise on Lorentz algebra. Show that a massless particle state |p, A) of definite

momentum and helicity satisfies the eigenstate-like condition

Canuwd PV D, N) = 2Py [p, \). (19)

* Finally, for extra challenge show that the continuous Lorentz group — or rather its double
cover Spin(3,1) — is isomorphic to SL(2, C), the group of complex 2 x 2 matrices (unitary
or not) with det = 1. The correspondence between the Lorentz symmetries L/, and the
SL(2,C) matrices M works like this: One one hand, M = My (L), the LH Weyl spinor

representation of L; on the other hand we may reconstruct L from M according to
V= IRVY = Vgl = M(Ve')M'. (20)

To make this work, show that:

(a) For any L, det(Mp(L)) =1 so that My (L) € SL(2,C).

(b) For any M € SL(2,C) eq. (20) defined a Lorentz symmetry.
Hint: prove and use det(V,d*) =V, V.

(c) For a unitary M eq. (20) leads to L being a pure rotation of space for which My = M,
cf. eq. (6).

(d) For an hermitian M eq. (20) leads to L being a pure Lorentz boost for which My = M,
cf. eq. (8).

(e) Use polar decomposition M = unitary x hermitian to show that any M € SL(2, C) leads

to a continuous Lorentz transform L = R x B.



