
PHY–396 K. Problem set #8. Due November 8, 2012.

1. First, an exercise in Dirac matrices γµ. Please do not assume any specific form of these 4×4

matrices, just use the anti-commutation relations

γµγν + γνγµ = 2gµν (1)

and (γ0)† = +γ0 while (γi)† = −γi for i = 1, 2, 3.

(a) Show that γαγα = 4, γαγνγα = −2γν , γαγµγνγα = 4gµν , and γαγλγµγνγα = −2γνγµγλ.

Hint: use γαγν = 2gνα − γνγα repeatedly.

(b) The electron field in the EM background obeys the covariant Dirac equation(
iγµDµ − m

)
Ψ(x) = 0 where DµΨ = ∂µΨ− ieAµΨ. Show that this equation implies

(
DµD

µ + m2 + qFµνS
µν
)

Ψ(x) = 0. (2)

Besides the 4 Dirac matrices γµ, there is another useful matrix γ5
def
= iγ0γ1γ2γ3.

(c) Show that γ5 anticommutes with each of the γµ matrices — γ5γµ = −γµγ5 — and

commutes with all the spin matrices Sµν .

(d) Show that γ5 is hermitian and that (γ5)2 = 1.

(e) Show that γ5 = (i/24)εκλµνγ
κγλγµγν and γ[κγλγµγν] = −24iεκλµν γ5.

(f) Show that γ[λγµγν] = −6iεκλµν γκγ
5.

(g) Show that any 4×4 matrix Γ is a unique linear combination of the following 16 matrices:

1, γµ, 1
2γ

[µγν] = −2iSµν , γ5γµ, and γ5.

∗ My conventions here are: ε0123 = −1, ε0123 = +1, γ[µγν] = γµγν − γνγµ,

γ[λγµγν] = γλγµγν − γλγνγµ + γµγνγλ − γµγλγν + γνγλγµ − γνγµγλ, etc.

Now consider Dirac matrices in spacetime dimensions d 6= 4. Such matrices always satisfy

the Clifford algebra (1), but their sizes depend on d.

Let Γ = inγ0γ1 · · · γd−1 be the generalization of the γ5 to d dimensions; the pre-factor in = ±i
or ±1 is chosen such that Γ = Γ† and Γ2 = +1.
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(h) For even d, Γ anticommutes with all the γµ. Prove this, and use this fact to show that

there are 2d independent products of the γµ matrices, and consequently the matrices

should be 2d/2 × 2d/2.

(i) For odd d, Γ commutes with all the Γµ — prove this. Consequently, one can set Γ = +1

or Γ = −1; the two choices lead to in-equivalent sets of the γµ.

Classify the independent products of the γµ for odd d and show that their net number

is 2d−1; consequently, the matrices should be 2(d−1)/2 × 2(d−1)/2.

2. Now let’s go back to d = 3 + 1 and learn about the Weyl spinors and Weyl spinor fields.

Since all the spin matrices Sµν commute with the γ5, for all continuous Lorentz symmetries

Lµν their Dirac-spinor representations MD(L) = exp
(
− i

2ΘαβS
αβ
)

are block-diagonal in the

eigenbasis of the γ5. This makes the Dirac spinor Ψ a reducible multiplet of the continu-

ous Lorentz group SO+(3, 1) — it comprises two different irreducible 2-component spinor

multiplets called the left-handed Weyl spinor ψL and the right-handed Weyl spinor ψR.

This decomposition becomes clear in the Weyl convention for the Dirac matrices where

γµ =

(
0 σ̄µ

σµ 0

)
where

σµ
def
=
(
12×2,−σσ

)
,

σ̄µ
def
=
(
12×2,+σσ

)
,

(3)

and consequently

γ5 =

(
−1 0

0 +1

)
=⇒ MD(L) =

(
ML(L) 0

0 MR(L)

)
. (4)

(a) Check that the γ5 matrix indeed has this form and write down explicit matrices for the

Sµν in the Weyl convention.

In the Weyl convention

ΨDirac(x) =

(
ψL(x),

ψR(x)

)
where

ψ′L(x′) = ML(L)ψL(x),

ψ′R(x′) = MR(L)ψR(x).
(5)

(b) Express the Dirac Lagrangian Ψ(iγµ∂µ − m)Ψ in terms of the Weyl spinor fields ψL(x)

and ψR(x) (and their conjugates ψ†L(x) and ψ†R(x)) and show that for m = 0 the two

Weyl spinor fields become independent from each other.
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Now let’s work out the explicit forms of the ML and MR matrices for the pure rotations and

for the pure boosts.

(c) Show that for a space rotation R through angle φ around axis n,

ML(R) = MR(R) = exp
(
− i

2φn · σσ
)
∈ SU(2), (6)

so both the left-handed and the right-handed Weyl spinors ψL and ψR transform as the

ordinary 2-component spinors of the Spin(3) rotation group.

(d) Show that for a Lorentz boost of rapidity r in the direction n

ML(B) = exp(−1
2 r n · σσ

)
while MR(B) = exp(+1

2 r n · σσ
)
. (7)

The rapidity is related to the β and γ parameters of a Lorentz boost as β = tanh(r),

γ = cosh(r). For two successive boosts in the same directions, the rapidities add up,

r1+2 = r1 + r2. In terms of the β and γ parameters,

ML =
√
γ ×

√
1 − β n · σσ , MR =

√
γ ×

√
1 + β n · σσ . (8)

Note that for the boosts ML 6= MR — so the left-handed Weyl spinors transform differ-

ently from the right-handed Weyl spinors — and that both ML and MR are non-unitary.

The LH Weyl spinor and the RH Weyl spinor are two different, in-equivalent multiplets of

the continuous Lorentz symmetry SO+(3, 1), or rather Spin(3, 1). However, each of them is

equivalent to the complex conjugate of the other spinor multiplet.

(e) Show that for any L ∈ SO+(3, 1),

MR = σ2M
∗
Lσ2 and ML = σ2M

∗
Rσ2 , (9)

and consequently σ2ψ
∗
R transforms like ψL while σ2ψ

∗
L transforms like ψR,

σ2ψ
′∗
R(x′) = ML σ2ψ

∗
R(x) and σ2ψ

′∗
L (x′) = MR σ2ψ

∗
L(x). (10)
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3. The third problem is about the plane-wave solutions e−ipxu(p, s) and e+ipxv(p, x) of the

Dirac equation. In all these waves p0 = +Ep = +
√
p2 +m2 while the 4–component spinors

u(p, s) and v(p, s) satisfy

(6p−m)u(p, s) = 0, (6p+m)v(p, s) = 0 (11)

and are normalized to

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Eδs,s′ . (12)

Let’s writing down explicit formulae for these spinors in the Weyl basis for the γµ matrices.

(a) Show that for p = 0,

u(p = 0, s) =

(√
mξs
√
mξs

)
(13)

where ξs is a two-component SO(3) spinor encoding the electron’s spin state. The ξs

are normalized to ξ†sξs′ = δs,s′ .

(b) For other momenta, u(p, s) = M(boost)u(p = 0, s) for the boost that turns (m,~0) into

pµ. Use eqs. (8) to show that

u(p, s) =

(√
E − p · σσ ξs
√
E + p · σσ ξs

)
=

(√
pµσ̄µ ξs√
pµσµ ξs

)
. (14)

(c) Use similar arguments to show that

v(p, s) =

(
+
√
E − p · σσ ηs

−
√
E + p · σσ ηs

)
=

(
+
√
pµσ̄µ ηs

−
√
pµσµ ηs

)
(15)

where ηs are two-component SO(3) spinors normalized to η†sηs′ = δs,s′ .

Physically, the ηs should have opposite spins from ξs — the holes in the Dirac sea have

opposite spins (as well as pµ) from the missing negative-energy particles. Mathematically,

this requires η†sSηs = −ξ†sSξs; we may solve this condition by letting ηs = σ2ξ
∗
s = ±iξ−s.
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(d) Check that this is a solution, then show that it leads to v(p, s) = γ2u∗(p, s).

(e) Show that for ultra-relativistic electrons or positrons of definite helicity λ = ±1
2 , the

Dirac plane waves become chiral — i.e., dominated by one of the two irreducible Weyl

spinor components ψL(x) or ψR(x) of the Dirac spinor Ψ(x) while the other component

becomes negligible. Specifically,

u(p,−1
2) ≈

√
2E

(
ξL

0

)
, u(p,+1

2) ≈
√

2E

(
0

ξR

)
,

v(p,−1
2) ≈ −

√
2E

(
0

ηL

)
, v(p,+1

2) ≈
√

2E

(
ηR

0

)
.

(16)

Note that for the electrons the helicity and the chirality are both left or both right, but

for the positrons the chirality is opposite from the helicity.

Back in problem 2(b) we saw that for m = 0 the LH and the RH Weyl spinor fields decouple

from each other. Now this exercise show us which particle modes comprise each Weyl spinor:

The ψL(x) contains the left-handed fermions and the right-handed antifermions, while the

ψR(x) contains the right-handed fermions and the left-handed antifermions.

Finally, let’s establish some basis-independent properties of the Dirac spinors u(p, s) and

v(p, s) — although you may use the Weyl basis to verify them.

(f) Show that

ū(p, s)u(p, s′) = +2mδs,s′ , v̄(p, s)v(p, s′) = −2mδs,s′ ; (17)

note that the normalization here is different from eq. (12) for the u†u and v†v.

(g) There are only two independent SO(3) spinors, hence
∑

s ξsξ
†
s =

∑
s η
†
sηs = 12×2. Use

this fact to show that

∑
s=1,2

uα(p, s)ūβ(p, s) = (6p+m)αβ and
∑
s=1,2

vα(p, s)v̄β(p, s) = (6p−m)αβ . (18)
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4. Next, a little exercise on Lorentz algebra. Show that a massless particle state |p, λ〉 of definite

momentum and helicity satisfies the eigenstate-like condition

εαλµν Ĵ
λµP̂ ν |p, λ〉 = 2λP̂λ |p, λ〉 . (19)

? Finally, for extra challenge show that the continuous Lorentz group — or rather its double

cover Spin(3, 1) — is isomorphic to SL(2,C), the group of complex 2× 2 matrices (unitary

or not) with det = 1. The correspondence between the Lorentz symmetries Lµν and the

SL(2,C) matrices M works like this: One one hand, M = ML(L), the LH Weyl spinor

representation of L; on the other hand we may reconstruct L from M according to

V ′µ = LµνV
ν ⇐⇒ V ′µσ̄

µ = M
(
Vµσ̄

µ)M †. (20)

To make this work, show that:

(a) For any L, det(ML(L)) = 1 so that ML(L) ∈ SL(2,C).

(b) For any M ∈ SL(2,C) eq. (20) defined a Lorentz symmetry.

Hint: prove and use det(Vµσ̄
µ) = VµV

µ.

(c) For a unitary M eq. (20) leads to L being a pure rotation of space for which ML = M ,

cf. eq. (6).

(d) For an hermitian M eq. (20) leads to L being a pure Lorentz boost for which ML = M ,

cf. eq. (8).

(e) Use polar decomposition M = unitary×hermitian to show that any M ∈ SL(2,C) leads

to a continuous Lorentz transform L = R×B.
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