
PHY–396 K. Problem set #9. Due November 15, 2012.

1. The parity P is the im-proper Lorentz symmetry that reflects the space but not the time,

(x, t)→ (−x,+t). This symmetry acts on Dirac spinor fields according to

Ψ̂′(−x,+t) = ±γ0Ψ̂(+x,+t) (1)

where the overall ± sign is the intrinsic parity of the fermion species.

(a) Verify that the Dirac equation transforms covariantly under (1) and that the Dirac

Lagrangian is invariant (apart from L(x, t)→ L(−x, t)).

In the Fock space, eq. (1) becomes

P̂Ψ̂(x, t)P̂ = ±γ0Ψ̂(−x, t) (2)

for some unitary operator P̂ that squares to one. Let’s find how this operator acts on the

particles and their states.

(b) Check that the plane-wave solutions u(p, s) and v(p, s) from the previous homework

— set 8, problem 3 — satisfy u(−p, s) = +γ0u(p, s) and v(−p, s) = −γ0v(p, s),

then use these relations to show that eq. (2) implies

P̂ âp,s P̂ = ±â−p,+s , P̂ â†p,s P̂ = ±â†−p,+s ,

P̂ b̂p,s P̂ = ∓b̂−p,+s , P̂ b̂†p,s P̂ = ∓b̂†−p,+s ,
(3)

and hence

P̂ |F (p, s)〉 = ± |F (−p,+s)〉 and P̂
∣∣F (p, s)

〉
= ∓

∣∣F (−p,+s)
〉
. (4)

Note that the fermion and the antifermion have opposite intrinsic parities!
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Now consider the bilinear products of a Dirac field Ψ(x) and its conjugate Ψ(x). Generally,

such products have form ΨΓΨ where Γ is one of 16 matrices discussed in the previous

homework — set 8, problem 1. Altogether, we have

S = ΨΨ, V µ = ΨγµΨ, Tµν = Ψ i
2γ

[µγν]Ψ, Aµ = Ψγ5γµΨ, and P = Ψiγ5Ψ.

(5)

(c) Show that all the bilinears (5) are Hermitian.

Hint: despite the Fermi statistics,
(

Ψ†αΨβ

)†
= +Ψ†βΨα; use this fact to show that(

ΨΓΨ
)†

= ΨΓΨ.

(d) Show that under continuous Lorentz symmetries, the S and the P transform as

scalars, the V µ and the Aµ as vectors, and the Tµν as an antisymmetric tensor.

(e) Find the transformation rules of the bilinears (5) under parity and show that while

S is a true scalar and V is a true (polar) vector, P is a pseudoscalar and A is an

axial vector.

2. The charge conjugation symmetry C does not transform the space or the time; instead,

it exchanges particles with antiparticles, for example the electrons e− with the positrons

e+,

Ĉ
∣∣e−(p, s)

〉
=
∣∣e+(p, s)

〉
, Ĉ

∣∣e+(p, s)
〉

=
∣∣e−(p, s)

〉
. (6)

In class I have explained that in the fermionic Fock space C is realized as a unitary

operator Ĉ = Ĉ† = Ĉ−1 which acts on the creation and annihilation operators according

to

Ĉ â†p,sĈ = ±b̂†p,s , Ĉ b̂†p,sĈ = ±â†p,s , Ĉ âp,sĈ = ±b̂p,s , Ĉ b̂p,sĈ = ±âp,s , (7)

where the overall ± sign is the intrinsic C-parity which depends on the fermionic species.

I have also showed that eqs. (7) imply that the quantum Dirac fields Ψ̂(x) and Ψ̂(x)
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transform under charge conjugation to

ĈΨ̂(x)Ĉ = ±γ2Ψ̂∗(x) and ĈΨ̂(x)Ĉ = ±Ψ̂
∗
(x)γ2. (8)

(a) Show that that the classical Dirac Lagrangian is invariant under the charge conju-

gation up to a total spacetime derivative. Note that in the classical limit the Dirac

fields anticommute with each other, Ψ∗αΨβ = −ΨβΨ∗α. Also, similar to the hermitian

conjugation of quantum fields, the complex conjugation of classical fermionic fields

reverses their order, (F1F2)
∗ = F ∗2F

∗
1 = −F ∗1F ∗2 .

Next, consider the charge-conjugation properties of the Dirac bilinears (5). To avoid the

operator-ordering problems, take the classical limit where Ψ(x) and Ψ†(x) anticommute

with each other, ΨαΨ†β = −Ψ†βΨα.

(b) Show that C turns ΨΓΨ into ΨΓcΨ where Γc = γ0γ2Γ>γ0γ2.

(c) Calculate Γc for all 16 independent matrices Γ and find out which Dirac bilinears are

C–even and which are C–odd.

3. Now consider a neutral bound state of a charged Dirac fermion F and the corresponding

antifermion, for example a qq̄ meson or a positronium “atom” (a hydrogen-atom-like

bound state of e− and e+). In the Fock space, such a bound state can be constructed as

|B(ptot = 0)〉 =

∫
d3pred

(2π)3

∑
s1,s2

ψ(pred, s1, s2)× â†(+pred, s1) b̂
†(−pred, s2) |0〉 (9)

for some wave-function ψ of the reduced momentum and the two spins.

(a) Suppose this bound state has a definite orbital angular momentum L and definite

net spin S. Show that the intrinsic C-parity and the P-parity of this bound state are

C = (−1)L+S , P = (−1)L+1. (10)

(b) Use eqs. (10) to explain why the annihilation rate of the ground 1S state of the

positronium “atom” depends on the net spin: the S = 0 state decays much faster

than the S = 1 state. Note: since the EM fields couple linearly to the electric charges

and currents (which are reversed by Ĉ), each photon has C = −1.
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4. In the last homework — set 8, problem 2 — we saw that a left-handed Weyl spinor ψL

is equivalent to the complex conjugate of a right-handed Weyl spinor ψR and vice verse.

Consequently, a Dirac spinor field Ψ(x) together with its conjugate Ψ(x) are equivalent

to two left-handed Weyl spinor fields χ(x) and χ̃(x) together with their right-handed

conjugates σ2χ
∗(x) and σ2χ̃∗(x). In the Weyl basis (where γ5 is diagonal)

Ψ(x) =

(
χ(x)

−σ2χ̃∗(x)

)
, Ψ(x) =

(
−χ̃>(x)σ2 , χ

†(x)
)
. (11)

(a) Show that up to a total derivative,

LDirac ≡ Ψ(i 6∂ −m)Ψ = iχ†σ̄µ∂µχ + iχ̃†σ̄µ∂µχ̃ + mχ>σ2 χ̃ + mχ†σ2 χ̃
∗. (12)

Hint: σ2σ
µσ2 = (σ̄µ)∗ = (σ̄µ)>.

Note the χ ↔ χ̃ symmetry of the Lagrangian (12): In the last two terms, the σ2

matrix is antisymmetric but the fields are fermionic, hence χ>σ2χ̃ = −χ̃>σ>2χ =

+χ̃>σ2χ and likewise χ†σ2χ̃
∗ = +χ̃†σ2χ

∗.

(b) Express the Dirac bi-linears (5) in terms of the Weyl spinors χ and χ̃ (and their her-

mitian conjugates). For simplicity, assume classical anticommuting fermionic fields.

(c) Work out how the parity P, the charge conjugation C, and the combined CP sym-

metry act on the Weyl spinor fields χ(x) and χ̃(x).

Now let’s generalize from two Weyl spinor fields comprising a Dirac field Ψ to any number

N of left-handed Weyl spinor fields χj(x) with free Lagrangian

L =
∑
j

iχj†σ̄µ∂µχj + 1
2

∑
j,k

M jkχ>jσ2 χk + 1
2

∑
j,k

M∗jkχ
j†σ2 χ

k∗. (13)

The mass matrix M jk here must be symmetric, M jk = Mkj , but it may be complex

rather than real.
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(d) Show that the Weyl equations for the χj fields lead to Klein–Gordon equations

∂2χi + (M∗M) ji χj = 0, (14)

which mean that the physical fermion masses2 are eigenvalues of the M∗M = M †M

matrix.

Hints: use σ2(σ
µ)>σ2 = σ̄µ and σµσ̄ν + σν σ̄µ = 2gµν .

Now consider the combined CP symmetry of the Weyl fermions. The simplest realization

of this symmetry acts similarly on all the spinors,

CP : χj(x, t) → = ±i× σ2χ∗j(−x,+t), same ± i ∀j. (15)

Note that this realization is slightly different from what we had in part (b) — instead of

± sign for the χ and the opposite ∓ sign for the χ̃, we now have the same overall factor

±i for all the χi.

(e) Show that the free Lagrangian (13) is invariant under this symmetry if and only if

the mass matrix M jk is real.

If the mass matrix M jk is complex, we can make it real via some unitary transform of

fermions into each other, χi(x)→ U j
i χj(x). Consequently, the free Weyl fermions always

have a CP symmetry, but its action on the original (un-transformed) spinors becomes

CP : χj(x, t) →
∑
k

C k
j σ2χ

∗
k(−x,+t) (16)

for some unitary matrix C.

(f) Show that the Lagrangian (13) is invariant under (16) provided the mass matrix M

and the unitary matrix C are related by CM∗C> = −M .

? For extra challenge, show that such C matrix exists for any complex symmetric mass

matrix M .

However, for the interacting fermions, changing the basis and hence the CP action from

(15) to (16) may spoil the CP symmetry of the interactions. In class, I shall explain how

this happens for the weak interactions.
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