PHY-396 K. Problem set #9. Due November 15, 2012.

1. The parity P is the im-proper Lorentz symmetry that reflects the space but not the time,

(x,t) = (—x,+t). This symmetry acts on Dirac spinor fields according to

V(=x,4t) = £7°U(+x, +1)

where the overall + sign is the intrinsic parity of the fermion species.
(a) Verify that the Dirac equation transforms covariantly under (1) and that the Dirac

Lagrangian is invariant (apart from £(x,t) — L(—x,1)).

In the Fock space, eq. (1) becomes

PU(x,t)P = +7°0(—x,1) (2)

for some unitary operator P that squares to one. Let’s find how this operator acts on the

particles and their states.
(b) Check that the plane-wave solutions u(p, s) and v(p, s) from the previous homework
— L, problem 3 — satisfy u(—p, s) = +1%(p, s) and v(—p,s) = —%0(p,s),

then use these relations to show that eq. (2) implies

Pa, P = +a_, ., Pal P = xal ., 5
Pbps P = Fb_p s PbLsP - :FbT—pHrs’

and hence

P|F(p,s)) = +|F(-p,+s)) and P[F(p.,s)) = F[F(-p,+s)). (4)

Note that the fermion and the antifermion have opposite intrinsic parities!
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Now consider the bilinear products of a Dirac field ¥(z) and its conjugate ¥(z). Generally,
such products have form WI'W where I' is one of 16 matrices discussed in the previous

homework — et g, problem 1. Altogether, we have

S = WU, VM = Uylu, TH = @%’7[#71/]\1;7 AP = U510, and P = Uiy,
(5)

(c) Show that all the bilinears (5) are Hermitian.
.i.
Hint: despite the Fermi statistics, (\IJL\IJ5> = +\I’2\Da; use this fact to show that

(Trw)’ = Trw.

(d) Show that under continuous Lorentz symmetries, the S and the P transform as

scalars, the V# and the A* as vectors, and the TH” as an antisymmetric tensor.

(e) Find the transformation rules of the bilinears (5) under parity and show that while
S is a true scalar and V' is a true (polar) vector, P is a pseudoscalar and A is an

axial vector.

. The charge conjugation symmetry C does not transform the space or the time; instead,
it exchanges particles with antiparticles, for example the electrons e~ with the positrons
et

~ ~

Cle (p.5)) = [e"(p.5)), Cle"(ps)) = [e”(p.9)). (6)

In class I have explained that in the fermionic Fock space C is realized as a unitary
operator C = Ct = C~! which acts on the creation and annihilation operators according

to

Q

Ca,,C = +b,,, Cb,,C = *a,,, (7)

p;s

where the overall &+ sign is the intrinsic C-parity which depends on the fermionic species.

I have also showed that eqs. (7) imply that the quantum Dirac fields ¥(z) and ﬁ(x)
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transform under charge conjugation to

CU(2)C = +20% () and CU@)C = £T(2)2. (8)

(a) Show that that the classical Dirac Lagrangian is invariant under the charge conju-
gation up to a total spacetime derivative. Note that in the classical limit the Dirac
fields anticommute with each other, W Vg = —WgW7 . Also, similar to the hermitian
conjugation of quantum fields, the complex conjugation of classical fermionic fields

reverses their order, (F1Fy)* = Fy F} = —F[F5.

Next, consider the charge-conjugation properties of the Dirac bilinears (5). To avoid the
operator-ordering problems, take the classical limit where ¥(x) and ¥'(z) anticommute
with each other, \Ilalllg = —\I/E\Ila.

(b) Show that C turns WI'W into WI'*W where ['¢ = 7042174042,

(c) Calculate I'® for all 16 independent matrices I' and find out which Dirac bilinears are
C—even and which are C-odd.

. Now consider a neutral bound state of a charged Dirac fermion F' and the corresponding
antifermion, for example a ¢§ meson or a positronium “atom” (a hydrogen-atom-like

bound state of e~ and e™). In the Fock space, such a bound state can be constructed as

d3pred ~ 4 o
‘B(ptot = 0)> = /(2%)3 Z ¢(pred751752) X a (+pred751>b (_pred752) ‘O> (9>

51,52
for some wave-function v of the reduced momentum and the two spins.

(a) Suppose this bound state has a definite orbital angular momentum L and definite

net spin S. Show that the intrinsic C-parity and the P-parity of this bound state are

C = (-5, p = (=)L (10)

(b) Use egs. (10) to explain why the annihilation rate of the ground 1S state of the
positronium “atom” depends on the net spin: the S = 0 state decays much faster
than the S = 1 state. Note: since the EM fields couple linearly to the electric charges

and currents (which are reversed by 6), each photon has C' = —1.



4. In the last homework — Fef g, problem 2 — we saw that a left-handed Weyl spinor vy,
is equivalent to the complex conjugate of a right-handed Weyl spinor ¥)p and vice verse.
Consequently, a Dirac spinor field ¥(z) together with its conjugate ¥(z) are equivalent
to two left-handed Weyl spinor fields y(x) and x(x) together with their right-handed
conjugates oox*(z) and o?¥*(z). In the Weyl basis (where 7° is diagonal)

W(a) :< K ) Ta) = (—X" @0, (@), (1)

—02)2*(.117)
(a) Show that up to a total derivative,
LDirac = Y(i@—m)¥ = i){f&”@ux + i)ZT5“8u>~( + my oo X + mxloa ¥*. (12)

Hint: ogotoy = (64)* = (o).
Note the y <+ Y symmetry of the Lagrangian (12): In the last two terms, the o2
matrix is antisymmetric but the fields are fermionic, hence x ooy = —)ZTazT X =

+x Toox and likewise xToax* = +x ooy ™.

(b) Express the Dirac bi-linears (5) in terms of the Weyl spinors x and y (and their her-

mitian conjugates). For simplicity, assume classical anticommuting fermionic fields.

(c) Work out how the parity P, the charge conjugation C, and the combined CP sym-
metry act on the Weyl spinor fields y(z) and x(z).

Now let’s generalize from two Weyl spinor fields comprising a Dirac field ¥ to any number

N of left-handed Weyl spinor fields X; (x) with free Lagrangian

L = Zz’xﬂ(r’“‘auxj + %ZMijjTagxk + %ZM;kaTO'Q s (13)
J Ik Ik

The mass matrix M7% here must be symmetric, M7% = MF¥7 but it may be complex

rather than real.
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(d) Show that the Weyl equations for the x; fields lead to Klein-Gordon equations

*x; + (M*M)/x; = 0, (14)

which mean that the physical fermion masses? are eigenvalues of the M*M = MTM
matrix.

Hints: use 02(0“)T02 =gt and oHa¥ + oVt = 2gM".

Now consider the combined CP symmetry of the Weyl fermions. The simplest realization

of this symmetry acts similarly on all the spinors,
CP:x;(x,t) — = &ixo2xj(—x%,+t), same i Vj. (15)

Note that this realization is slightly different from what we had in part (b) — instead of
=+ sign for the x and the opposite F sign for the y, we now have the same overall factor

+i for all the ;.

(e) Show that the free Lagrangian (13) is invariant under this symmetry if and only if

the mass matrix MJ* is real.

If the mass matrix M7* is complex, we can make it real via some unitary transform of
fermions into each other, x;(z) — Uij x;j(z). Consequently, the free Weyl fermions always

have a CP symmetry, but its action on the original (un-transformed) spinors becomes
CP: x;(x,t) = Y CFoaxi(—x,+1) (16)
k

for some unitary matrix C.

(f) Show that the Lagrangian (13) is invariant under (16) provided the mass matrix M
and the unitary matrix C' are related by CM*CT = —M.

* For extra challenge, show that such C' matrix exists for any complex symmetric mass

matrix M.

However, for the interacting fermions, changing the basis and hence the CP action from
(15) to (16) may spoil the CP symmetry of the interactions. In class, I shall explain how

this happens for the weak interactions.



