
PHY–396 K. Problem set #12, last this semester! Due December 6, 2012.

1. Consider the muon pair production in QED. At the tree level,

e− e+

µ− µ+

p1 p2

p′1 p′2

q
〈

µ−, µ+
∣

∣M
∣

∣e−, e+
〉

=
e2

s
× ū(µ−)γνv(µ+)× v̄(e+)γνu(e

−).

(1)

In class we have focused on the un-polarized cross-section for this process; in this exercise

we focus on the polarized amplitudes for definite helicities of all 4 particles involved.

For simplicity, let us assume that all the particles are ultra-relativistic so that their Dirac

spinors u(e−), v(e+), u(µ−), v(µ+) all have definite chiralities,

uL ≈
√
2E

(

ξL

0

)

, uR ≈
√
2E

(

0

ξR

)

,

vL ≈ −
√
2E

(

0

ηL

)

, vR ≈
√
2E

(

ηR

0

)

.

(2)

cf. homework set 8, eq. (8.16).

(a) Show that in the approximation (2),

v̄(e+L )γνu(e
−

L ) = v̄(e+R)γνu(e
−

R) = 0, (3)

which means there is no muon pairs production unless the initial electron and positron

have opposite helicities.

(b) Show that the µ− and the µ+ must also have opposite helicities because

ū(µ−L )γ
νv(µ+L) = ū(µ−R)γ

νv(µ+R) = 0. (4)

(c) Let’s work in the center-of-mass frame where the initial e− and e+ collide along the z

axis, pν1 = (E, 0, 0,+E), pν2 = (E, 0, 0,−E). Calculate the 4–vector v̄(e+)γνu(e−) in
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this frame and show that

v̄(e+L )γνu(e
−

R) = 2E × (0,+i,+1, 0), v̄(e+R)γνu(e
−

L) = 2E × (0,−i,+1, 0). (5)

(d) In the CM frame the muons fly away in opposite directions at some angle θ to the

electron / positron directions. Without loss of generality we may assume the muons’

momenta being in the xz plane, thus

p′ν1 = (E,+E sin θ, 0,+E cos θ), p′ν1 = (E,−E sin θ, 0,−E cos θ) (6)

Calculate the 4–vector ū(µ−)γνv(µ
+) for the muons and show that

ū(µ−R)γ
νv(µ+L) = 2E × (0,−i cos θ,+1,+i sin θ),

ū(µ−L)γ
νv(µ+R) = 2E × (0,+i cos θ,+1,−i sin θ).

(7)

(e) Now calculate the amplitudes (1) for all possible combinations of particles’ helicities,

calculate the partial cross-sections, and show that

dσ(e−L + e+R → µ−L + µ+R)

dΩc.m.
=

dσ(e−R + e+L → µ−R + µ+L )

dΩc.m.
=

α2

4s
× (1 + cos θ)2,

dσ(e−L + e+R → µ−R + µ+L)

dΩc.m.
=

dσ(e−R + e+L → µ−L + µ+R)

dΩc.m.
=

α2

4s
× (1− cos θ)2,

dσ(e−L + e+L → µ−any + µ+any)

dΩc.m.
=

dσ(e−R + e+R → µ−any + µ+any)

dΩc.m.
= 0,

dσ(e−any + e+any → µ−L + µ+L)

dΩc.m.
=

dσ(e−any + e+any → µ−R + µ+R)

dΩc.m.
= 0.

(8)

(f) Finally, sum / average over the helicities and calculate the un-polarized cross-section

for the muon pair production.
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2. Next, consider the Bhabha scattering e−e+ → e−e+. In QED, there are two tree-level

Feynman diagrams contributing to this process, namely

e−

e−′

e+

e+′

⊕

e−

e−′

e+

e+′

(9)

(a) Evaluate the two diagrams and write the amplitude M = M1 +M2. Mind the sign

rules for the fermions.

Now comes the real work: calculating the un-polarized partial cross-section

(

dσ

dΩ

)

c.m.

=
|M|2
64π2s

(10)

where |M|2 stands for |M|2 summed over final particle spins and averaged over the spins

of the initial particles. Note the two diagrams (9) must be added together before squaring

the amplitude, because

|M1 +M2|2 = |M1|2 + |M2|2 + 2Re
(

M∗

1M2

)

6= |M1|2 + |M2|2. (11)

For simplicity, assume E ≫ me and neglect the electron’s mass throughout your calcula-

tion. You may find it convenient to express products of momenta in terms of Mandelstam’s

variables s, t, and u. In the me ≈ 0 approximation, p21 = p22 = p′21 = p′22 = m2
e ≈ 0 while

(p1p2) = (p′1p
′

2) ≈ 1
2
s, (p1p

′

1) = (p2p
′

2) ≈ −1
2
t, (p1p

′

2) = (p2p
′

1) ≈ −1
2
u. (12)

(b) Let’s start with the second diagram’s amplitude M2. Sum / average the |M2|2 over

all spins and show that

1

4

∑

all spins

|M2|2 = 2e4 × t2 + u2

s2
. (13)
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(c) Similarly, show that for the first diagram

1

4

∑

all spins

|M1|2 = 2e4 × s2 + u2

t2
. (14)

(d) Now consider the interference M∗

1 ×M2 between the two diagrams. Show that

1

4

∑

all spins

M∗

1 ×M2 = 2e4 × u2

st
. (15)

(e) Finally assemble all the terms together and show that for the Bhabha scattering

(

dσ

dΩ

)

c.m.

=
α2

2s
× s4 + t4 + u4

s2 × t2
=

α2

4s
×
(

3 + cos2 θ

1− cos θ

)2

. (16)

3. A muon usually decays into an electron, an electron-flavored antineutrino, and a muon-

flavored neutrino, µ− → e−ν̄eνµ. At the tree level of the Standard model, this decay

proceeds through a single Feynman diagram

W− →

µ−

νµ

ν̄e

e−

(17)

Since all the momenta in this diagram are much smaller than MW , me may approximate

the W propagator as simply igκλ/M2
W . Consequently, the decay amplitude is

〈

e−, ν̄e, νµ
∣

∣M
∣

∣µ−
〉

≈ igκλ

M2
W

× ū(νµ)

(

−ig2γκ
1− γ5

2

)

u(µ−)×

× ū(e−)

(

−ig2γλ
1− γ5

2

)

v(ν̄e)

=
GF√
2

[

ū(νµ)γ
λ(1− γ5)u(µ−)

]

×
[

ū(e−)γλ(1− γ5)v(ν̄e)
]

(18)

where GF ≈ 1.17 · 10−5GeV−2 is the Fermi constant. In this exercise, you will use this

amplitude to calculate the muon’s net decay rate Γ and the energy spectrum dΓ/dEe of

the final state electrons.
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(a) Sum the absolute square of the amplitude (18) over the final particle spins and average

over the initial muon’s spin. Show that altogether,

1
2

∑

all

spins

∣

∣

〈

e−, ν̄e, νµ
∣

∣M
∣

∣µ−
〉
∣

∣

2
= 64G2

F (pµ · pν̄) (pe · pν). (19)

The rest of this problem is the phase space calculation. The following lemma is very useful

for three-body decays like µ− → e− + νµ + ν̄e:

For a decay of initial particle of mass M0 into three final particles of respective masses

m1, m2, and m3, the partial decay rate in the rest frame of the original particle is

dΓ =
1

2M0

× |M|2 × d3Ω

256π5
× dE1 dE2 dE3 δ(E1 + E2 + E3 −M0), (20)

where d3Ω comprises three angular variables parametrizing the directions of the three

final-state particles relative to some external frame, but not affecting the angles between

the three momenta. For example, one may use two angles to describe the orientation of

the decay plane (the three momenta are coplanar, p1 + p2 + p3 = 0) and one more angle

to fix the direction of e.g., p1 in that plane. Altogether,
∫

d3Ω = 4π × 2π = 8π2.

(b) Prove this lemma. Also show that when m1 = m2 = m3 = 0, the kinematically

allowed range of the final particles’ energies is given by

0 ≤ E1, E2, E3 ≤ 1
2
M0 while E1 + E2 + E3 = M0, (21)

but for the non-zero masses m1,2,3 this range is much more complicated.

Note that the electron and the neutrinos are much lighter then the muon, so in most decay

events all three final-state particles are ultra-relativistic. This allows us to approximate

me ≈ mν ≈ mν̄ ≈ 0, which gives us the limits (21) for the final particles’ energies.

Experimentally, the neutrinos and the antineutrinos are hard to detect. But it is easy to

measure the muon’s net decay rate Γ = 1/τµ and the energy distribution dΓ/dEe of the

electrons produced by decaying muons.

(c) Integrate the muon’s partial decay rate over the final particle energies and derive first

the dΓ/dEe and then the total decay rate.
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