1. First, a reading assignment: $\S 7.2$ of the Peskin \& Schroeder textbook about the $L S Z$ reduction formula.
2. Next, a simple exercise about the Yukawa theory. For $M_{s}>2 m_{f}$, the scalar particle becomes unstable: it decays into a fermion and an antifermion, $S \rightarrow f+\bar{f}$.
(a) Calculate the tree-level decay rate $\Gamma(S \rightarrow f+\bar{f})$.
(b) In class, we have calculated

$$
\begin{align*}
\Sigma_{\Phi}^{1 \text { loop }}\left(p^{2}\right) & =\frac{12 g^{2}}{16 \pi^{2}} \int_{0}^{1} d \xi \Delta(\xi) \times\left[\frac{1}{\epsilon}-\gamma_{E}+\frac{1}{3}+\log \frac{4 \pi \mu^{2}}{\Delta(\xi)}\right] \tag{1}\\
\text { for } \Delta(\xi) & =m_{f}^{2}-\xi(1-\xi) p^{2} . \tag{2}
\end{align*}
$$

Show that for $p^{2}>4 m_{f}^{2}$, this $\Sigma_{\Phi}\left(p^{2}\right)$ has an imaginary part and calculate it for $p^{2}=M_{s}^{2}+i \epsilon$.
Note: at this level, you may neglect the difference between $m_{f}^{\text {bare }}$ and $m_{f}^{\text {physical }}$.
(c) Verify that

$$
\begin{equation*}
\operatorname{Im} \Sigma_{\Phi}^{1 \text { loop }}\left(p^{2}=M_{s}^{2}+i \epsilon\right)=-M_{s} \Gamma^{\text {tree }}(S \rightarrow f+\bar{f}) \tag{3}
\end{equation*}
$$

and explain this relation in terms of the optical theorem.
3. Finally, a harder exercise about the scalar $\lambda \phi^{4}$ theory. As discussed in class, in this theory field strength renormalization begins at two-loop level. Specifically, the 1PI diagram

provides the leading contribution to the $d \Sigma\left(p^{2}\right) / d p^{2}$ and hence to the $Z-1$. Your task is to evaluate this contribution.
(a) First, write the two-loop $\Sigma\left(p^{2}\right)$ as an integral over two independent loop momenta, say q_{1}^{μ} and q_{2}^{μ}, then use Feynman's parameter trick - cf. eq. (F.d) of the homework set 13 - to write the product of three propagators as

$$
\begin{equation*}
\iiint d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1) \frac{2}{(\mathcal{D})^{3}} \tag{5}
\end{equation*}
$$

where \mathcal{D} is a quadratic polynomial of the momenta q_{1}, q_{2}, p. Finally, change the independent momentum variables from q_{1} and q_{2} to $k_{1}=q_{1}+$ something $\times q_{2}+$ something $\times p$ and $k_{2}=q_{2}+$ something $\times p$ to give \mathcal{D} a simpler form

$$
\begin{equation*}
\mathcal{D}=\alpha \times k_{1}^{2}+\beta \times k_{2}^{2}+\gamma \times p^{2}-m^{2}+i 0 \tag{6}
\end{equation*}
$$

for some (ξ, η, ζ)-dependent coefficients α, β, γ, for example

$$
\begin{equation*}
\alpha=(\xi+\zeta), \quad \beta=\frac{\xi \eta+\xi \zeta+\eta \zeta}{\xi+\zeta}, \quad \gamma=\frac{\xi \eta \zeta}{\xi \eta+\xi \zeta+\eta \zeta} \tag{7}
\end{equation*}
$$

Make sure the momentum shift has unit Jacobian $\partial\left(q_{1}, q_{2}\right) / \partial\left(k_{1}, k_{2}\right)=1$.
Warning: Do not set $p^{2}=m^{2}$ at this stage.
(b) Express the derivative $d \Sigma\left(p^{2}\right) / d p^{2}$ in terms of

$$
\begin{equation*}
\iint d^{4} k_{1} d^{4} k_{2} \frac{1}{\mathcal{D}^{4}} . \tag{8}
\end{equation*}
$$

Note that although this momentum integral diverges as $k_{1,2} \rightarrow \infty$, the divergence is logarithmic rather than quadratic.
(c) To evaluate the momentum integral (8), Wick-rotate the momenta k_{1} and k_{2} to the Euclidean space, and then use the dimensional regularization. Here are some useful formulæ for this calculation:

$$
\begin{align*}
\frac{6}{A^{4}} & =\int_{0}^{\infty} d t t^{3} e^{-A t} \tag{9}\\
\int \frac{d^{D} k}{(2 \pi)^{D}} e^{-c t k^{2}} & =(4 \pi c t)^{-D / 2} \tag{10}\\
\Gamma(2 \epsilon) X^{\epsilon} & =\frac{1}{2 \epsilon}-\gamma_{E}+\frac{1}{2} \log X+O(\epsilon) . \tag{11}
\end{align*}
$$

(d) Assemble your results as

$$
\begin{array}{rl}
\frac{d \Sigma\left(p^{2}\right)}{d p^{2}}=-\frac{\lambda^{2}}{12(4 \pi)^{4}} \iiint_{\xi, \eta, \zeta \geq 0} & d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1) \times \frac{\xi \eta \zeta}{(\xi \eta+\xi \zeta+\eta \zeta)^{3}} \times \\
& \times\left(\frac{1}{\epsilon}-2 \gamma_{E}+2 \log \frac{4 \pi \mu^{2}}{m^{2}}+\log \frac{(\xi \eta+\xi \zeta+\eta \zeta)^{3}}{\left(\xi \eta+\xi \zeta+\eta \zeta-\xi \eta \zeta\left(p^{2} / m^{2}\right)\right)^{2}}\right) \tag{12}
\end{array}
$$

(e) Before you evaluate the Feynman parameter integral (12) - which looks like a frightful mess - make sure it does not introduce its own divergences. That is, without actually calculating the integrals

$$
\begin{align*}
& \iiint_{\xi, \eta, \zeta \geq 0} d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1) \times \frac{\xi \eta \zeta}{(\xi \eta+\xi \zeta+\eta \zeta)^{3}} \tag{13}\\
& \iiint_{\xi, \eta, \zeta \geq 0} d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1) \times \frac{\xi \eta \zeta}{(\xi \eta+\xi \zeta+\eta \zeta)^{3}} \times \log \frac{(\xi \eta+\xi \zeta+\eta \zeta)^{3}}{\left(\xi \eta+\xi \zeta+\eta \zeta-\xi \eta \zeta\left(p^{2} / m^{2}\right)\right)^{2}}
\end{align*}
$$

make sure that they converge. Pay attentions to the boundaries of the parameter space and especially to the corners where $\xi, \eta \rightarrow 0$ while $\zeta \rightarrow 1$ (or $\xi, \zeta \rightarrow 0$, or $\eta, \zeta \rightarrow 0$).

This calculation shows that

$$
\begin{equation*}
\frac{d \Sigma}{d p^{2}}=\frac{\text { constant }}{\epsilon}+\text { a_finite_function }\left(p^{2}\right) \tag{14}
\end{equation*}
$$

and hence

$$
\begin{align*}
\Sigma\left(p^{2}\right)=(\text { a divergent constant }) & +(\text { another divergent constant }) \times p^{2} \\
& + \text { a_finite_function }\left(p^{2}\right) \tag{15}
\end{align*}
$$

up to the two-loop order. In fact, this behavior persists to all loops, so all the divergences of $\Sigma\left(p^{2}\right)$ may be canceled with just two counterterms, δ^{m} and $\delta^{Z} \times p^{2}$.
\star Optional exercise: Evaluate the integrals (13) for $p^{2}=m^{2}$ and show that

$$
\begin{align*}
& \iiint_{\xi, \eta, \zeta \geq 0} d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1) \times \frac{\xi \eta \zeta}{(\xi \eta+\xi \zeta+\eta \zeta)^{3}}=\frac{1}{2} \tag{16}\\
& \iiint_{\xi, \eta, \zeta \geq 0} d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1) \times \frac{\xi \eta \zeta}{(\xi \eta+\xi \zeta+\eta \zeta)^{3}} \times \log \frac{(\xi \eta+\xi \zeta+\eta \zeta)^{3}}{(\xi \eta+\xi \zeta+\eta \zeta-\xi \eta \zeta)^{2}}=-\frac{3}{4}
\end{align*}
$$

Do not try to do this calculation by hand - it would take way too much time. Instead,
use Mathematica or equivalent software. To help it along, replace the (ξ, η, ζ) variables with (x, w) according to

$$
\begin{gather*}
\xi=w \times x, \quad \eta=w \times(1-x), \quad \zeta=1-w \\
\iiint d \xi d \eta d \zeta \delta(\xi+\eta+\zeta-1)=\int_{0}^{1} d x \int_{0}^{1} d w w \tag{17}
\end{gather*}
$$

then integrate over w first and over x second.
Alternatively, you may evaluate the integrals like this numerically. In this case, don't bother changing variables, just use a simple 2D grid spanning a triangle defined by $\xi+\eta+\zeta=1, \xi, \eta, \zeta \geq 0$; modern computers can sum up a billion grid points in less than a minute. But watch out for singularities at the corners of the triangle.
(f) Finally, calculate the field strength renormalization factor

$$
\begin{equation*}
Z=\left[1-\frac{d \Sigma}{d p^{2}}\right]^{-1} \tag{18}
\end{equation*}
$$

to the two-loop order. Use the bare perturbation theory, i.e. divergent $\lambda_{\text {bare }}$ and $m_{\text {bare }}^{2}$ instead of the counterterms.

Note: the derivative $d \Sigma / d p^{2}$ in eq. (18) should be evaluated at $p^{2}=M_{\mathrm{ph}}^{2}$ - the physical mass ${ }^{2}$ of the scalar particle, but to the leading approximation we may let $M_{\mathrm{ph}}^{2} \approx m^{2}$ and set $p^{2}=m^{2}$ in eq. (12). This simplifies the second integral (13) a little bit -cf. eqs. (16) - although it's still a royal pain to calculate.

