
PHY–396 K. Problem set #15. Due February 7, 2013.

1. First, a reading assignment: §7.2 of the Peskin & Schroeder textbook about the LSZ

reduction formula.

2. Next, a simple exercise about the Yukawa theory. For Ms > 2mf , the scalar particle

becomes unstable: it decays into a fermion and an antifermion, S → f + f̄ .

(a) Calculate the tree-level decay rate Γ(S → f + f̄).

(b) In class, we have calculated

Σ1 loop
Φ (p2) =

12g2

16π2

1
∫

0

dξ∆(ξ)×

[

1

ǫ
− γE +

1

3
+ log

4πµ2

∆(ξ)

]

(1)

for ∆(ξ) = m2
f − ξ(1− ξ)p2. (2)

Show that for p2 > 4m2
f , this ΣΦ(p

2) has an imaginary part and calculate it for

p2 = M2
s + iǫ.

Note: at this level, you may neglect the difference between mbare
f and mphysical

f .

(c) Verify that

ImΣ1 loop
Φ (p2 = M2

s + iǫ) = −MsΓ
tree(S → f + f̄) (3)

and explain this relation in terms of the optical theorem.

3. Finally, a harder exercise about the scalar λφ4 theory. As discussed in class, in this theory

field strength renormalization begins at two-loop level. Specifically, the 1PI diagram

(4)

provides the leading contribution to the dΣ(p2)/dp2 and hence to the Z − 1. Your task is

to evaluate this contribution.
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(a) First, write the two-loop Σ(p2) as an integral over two independent loop momenta, say

qµ1 and qµ2 , then use Feynman’s parameter trick — cf. eq. (F.d) of the homework set

13 — to write the product of three propagators as

∫∫∫

dξ dη dζ δ(ξ + η + ζ − 1)
2

(D)3
(5)

where D is a quadratic polynomial of the momenta q1, q2, p. Finally, change the inde-

pendent momentum variables from q1 and q2 to k1 = q1+something×q2+something×p

and k2 = q2 + something × p to give D a simpler form

D = α× k21 + β × k22 + γ × p2 − m2 + i0 (6)

for some (ξ, η, ζ)–dependent coefficients α, β, γ, for example

α = (ξ + ζ), β =
ξη + ξζ + ηζ

ξ + ζ
, γ =

ξηζ

ξη + ξζ + ηζ
. (7)

Make sure the momentum shift has unit Jacobian ∂(q1, q2)/∂(k1, k2) = 1.

Warning: Do not set p2 = m2 at this stage.

(b) Express the derivative dΣ(p2)/dp2 in terms of

∫∫

d4k1 d
4k2

1

D4
. (8)

Note that although this momentum integral diverges as k1,2 → ∞, the divergence is

logarithmic rather than quadratic.

(c) To evaluate the momentum integral (8), Wick-rotate the momenta k1 and k2 to the

Euclidean space, and then use the dimensional regularization. Here are some useful

formulæ for this calculation:

6

A4
=

∞
∫

0

dt t3 e−At, (9)

∫

dDk

(2π)D
e−ctk2

=
(

4πct
)−D/2

, (10)

Γ(2ǫ)Xǫ =
1

2ǫ
− γE + 1

2
logX + O(ǫ). (11)
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(d) Assemble your results as

dΣ(p2)

dp2
= −

λ2

12(4π)4

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
×

×

(

1

ǫ
− 2γE + 2 log

4πµ2

m2
+ log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ(p2/m2))2

)

.

(12)

(e) Before you evaluate the Feynman parameter integral (12) — which looks like a frightful

mess — make sure it does not introduce its own divergences. That is, without actually

calculating the integrals
∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
, (13)

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
× log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ(p2/m2))2
,

make sure that they converge. Pay attentions to the boundaries of the parameter space

and especially to the corners where ξ, η → 0 while ζ → 1 (or ξ, ζ → 0, or η, ζ → 0).

This calculation shows that

dΣ

dp2
=

constant

ǫ
+ a finite function(p2) (14)

and hence

Σ(p2) = (a divergent constant) + (another divergent constant)× p2

+ a finite function(p2)
(15)

up to the two-loop order. In fact, this behavior persists to all loops, so all the divergences

of Σ(p2) may be canceled with just two counterterms, δm and δZ × p2.

⋆ Optional exercise: Evaluate the integrals (13) for p2 = m2 and show that

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
=

1

2
, (16)

∫∫∫

ξ,η,ζ≥0

dξdηdζ δ(ξ + η + ζ − 1)×
ξηζ

(ξη + ξζ + ηζ)3
× log

(ξη + ξζ + ηζ)3

(ξη + ξζ + ηζ − ξηζ)2
= −

3

4
.

Do not try to do this calculation by hand — it would take way too much time. Instead,
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use Mathematica or equivalent software. To help it along, replace the (ξ, η, ζ) variables

with (x, w) according to

ξ = w × x, η = w × (1− x), ζ = 1− w,

∫∫∫

dξdηdζ δ(ξ + η + ζ − 1) =

1
∫

0

dx

1
∫

0

dww,
(17)

then integrate over w first and over x second.

Alternatively, you may evaluate the integrals like this numerically. In this case, don’t

bother changing variables, just use a simple 2D grid spanning a triangle defined by

ξ + η + ζ = 1, ξ, η, ζ ≥ 0; modern computers can sum up a billion grid points in less

than a minute. But watch out for singularities at the corners of the triangle.

(f) Finally, calculate the field strength renormalization factor

Z =

[

1 −
dΣ

dp2

]−1

(18)

to the two-loop order. Use the bare perturbation theory, i.e. divergent λbare and m2
bare

instead of the counterterms.

Note: the derivative dΣ/dp2 in eq. (18) should be evaluated at p2 = M2
ph — the

physical mass2 of the scalar particle, but to the leading approximation we may let

M2
ph ≈ m2 and set p2 = m2 in eq. (12). This simplifies the second integral (13) a little

bit — cf. eqs. (16) — although it’s still a royal pain to calculate.
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