PHY-396 K. Problem set #15. Due February 7, 2013.

1. First, a reading assignment: §7.2 of the Peskin & Schroeder textbook about the LSZ

reduction formula.

2. Next, a simple exercise about the Yukawa theory. For My > 2my, the scalar particle

becomes unstable: it decays into a fermion and an antifermion, S — f + f.

(a) Calculate the tree-level decay rate I'(S — f + f).

(b) In class, we have calculated
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Show that for p? > 4m?c, this Y (p?) has an imaginary part and calculate it for

p? = M? +ie.
Note: at this level, you may neglect the difference between m?are and m?hysjcal.
(c) Verify that
Im S P (p? = M2 +ie) = —MT"(S — f+ f) (3)

and explain this relation in terms of the optical theorem.

3. Finally, a harder exercise about the scalar A¢* theory. As discussed in class, in this theory

field strength renormalization begins at two-loop level. Specifically, the 1PI diagram

provides the leading contribution to the d%(p?)/dp? and hence to the Z — 1. Your task is

to evaluate this contribution.



(a)

First, write the two-loop ¥(p?) as an integral over two independent loop momenta, say

¢} and ¢4, then use Feynman’s parameter trick — cf. eq. (F.d) of the

[ T3 — to write the product of three propagators as
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where D is a quadratic polynomial of the momenta q1, ¢2, p. Finally, change the inde-
pendent momentum variables from ¢ and g3 to k1 = ¢1+something x g2 +something x p

and k2 = g2 + something x p to give D a simpler form
D =axk?+ xki+ yxp2—m?+i0 (6)

for some (&, 7, ()—dependent coefficients «, 3, ~, for example
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Make sure the momentum shift has unit Jacobian 0(q1, g2)/0(k1, k2) = 1.
Warning: Do not set p> = m? at this stage.

Express the derivative dX(p?)/dp? in terms of

1
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Note that although this momentum integral diverges as k12 — oo, the divergence is

logarithmic rather than quadratic.

To evaluate the momentum integral (8), Wick-rotate the momenta k; and kg to the
Euclidean space, and then use the dimensional regularization. Here are some useful

formulee for this calculation:
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dx(p?)

(d) Assemble your results as
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(e) Before you evaluate the Feynman parameter integral (12) — which looks like a frightful

mess — make sure it does not introduce its own divergences. That is, without actually
calculating the integrals
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make sure that they converge. Pay attentions to the boundaries of the parameter space
and especially to the corners where £,7 — 0 while { — 1 (or £, — 0, or n,{ — 0).
This calculation shows that
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and hence
Y(p®) = (a divergent constant) + (another divergent constant) x p?
+ a_finite_function(p?) 15)
up to the two-loop order. In fact, this behavior persists to all loops, so all the divergences

of ¥(p?) may be canceled with just two counterterms, 8 and 6% x p2.

x Optional exercise: Evaluate the integrals (13) for p?> = m? and show that
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Do not try to do this calculation by hand — it would take way too much time. Instead,



use Mathematica or equivalent software. To help it along, replace the (£, 7, ) variables

with (z,w) according to

E=wxz, n=wx(1-1z), (=1-w,
1
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then integrate over w first and over x second.

Alternatively, you may evaluate the integrals like this numerically. In this case, don’t
bother changing variables, just use a simple 2D grid spanning a triangle defined by
E+n+C=1,&n,¢ > 0; modern computers can sum up a billion grid points in less

than a minute. But watch out for singularities at the corners of the triangle.

Finally, calculate the field strength renormalization factor
]!
z - [1 - _} (18)

to the two-loop order. Use the bare perturbation theory, i.e. divergent Apae and m%are

instead of the counterterms.

Note: the derivative dX/dp? in eq. (18) should be evaluated at p? = MSh — the
physical mass® of the scalar particle, but to the leading approximation we may let
Msh ~ m? and set p?> = m? in eq. (12). This simplifies the second integral (13) a little
bit — cf. egs. (16) — although it’s still a royal pain to calculate.



