
PHY–396 L. Problem set #19. Due March 7, 2013.

1. The first problem is about the muon’s gyromagnetic factor g. Experimentally, it has been

measured with a very high precision (9 significant digits) and the theoretical calculations

have a similarly high precision. At present, there is a very small discrepancy

gexpµ − gtheoryµ ≈ (58± 13stat ± 12syst) · 10−10, (1)

which is probably due new physics beyond the Minimal Standard Model (i.e., loops in-

volving some new particles, for example the superpartners). However, there is also some

uncertainty in the photon-hadron coupling, which affects the gµ at the two-loop order

in QED. Usually, the photon-hadron coupling is obtained from the e+e→hadrons cross-

section, but it can also be derived from the vector spectral functions obtained from the

τ → ντ + hadrons decays, and the two method yield slightly different results: the former

leads to eq. (1) while the later leads to a smaller discrepancy

gexpµ − gtheoryµ ≈ (15± 13stat ± 12syst) · 10−10. (2)

In this exercise we consider non-minimal versions of the Standard Model which contain

some extra particles. Your task is to calculate the effect of such particles on the muon’s

magnetic moment at the one-loop level, and comparing your results to eq. (1) establish

limits on masses and couplings of those extra particles.

(a) Let’s extend the minimal standard model by adding just one extra field Φ, a heavy

neutral scalar of mass MS ' 200 GeV which has a Yukawa coupling to the muon field

Ψ,

L ⊃ gΦ×ΨΨ. (3)

Calculate Φ’s contribution to the muon’s magnetic moment at the one-loop level.

Then use your result to derive an upper limit on the Yukawa coupling g.

1



(b) A different extension of the Standard model contains an axion, a very light pseu-

doscalar field φ which couples to muons (and other leptons) according to

L ⊃
∂µφ

fa
×Ψγ5γµΨ ≈ 2immuon

fa
φ×Ψγ5Ψ + a total derivative. (4)

The axion is a pseudo-Goldstone boson resulting from spontaneous breakdown of an

axial symmetry at a very high energy scale fa � 100 GeV; the symmetry is inexact

but very good, so the axion’s mass is non-zero but very small, MA � 1 MeV.

Calculate the axion’s contribution to the muon’s magnetic moment at the one-loop

level. Then use your result to derive a lower limit on the axion scale fa.

2. Next, calculate the δ2 counterterm of QED at the one-loop level and verify that it equals

to the δ1 counterterm we have calculated in class — cf. eq. (80) of my notes — including

the finite parts of both counterterms.

The counterterms depend on the regulators (both UV and IR) and on the gauge used

for the photon propagators, so use the same gauge and regulators we have used in class:

D = 4− 2ε < 4 dimensions to regulate the UV divergence, a tiny photon mass m2
γ � m2

e

to regulate the IR divergence, and the Feynman gauge for the photon propagators. Start

by calculating the Σ1,loop(6p) for the off-shell electron momenta p, then take the derivative

dΣ/d 6 p, and only then take the momentum on-shell, 6 p → me. Note that Σ(6 p) itself is

infrared-finite, but its derivative has an IR singularity when the momentum goes on-shell,

and that’s why you need the IR regulator.

Note: You should get δ2 = δ1 before you take the D → 4 limit. If this does not work,

check your calculations for mistakes.

3. Finally, consider the “scalar QED” — the theory of EM fields Aµ coupled to a charged

scalar field Φ instead of the electron field Ψ. The counterterms of this theory are related

by two Ward identities:

δ2 = δ
(1γ)
1 = δ

(2γ)
1 . (5)

Your task is to prove these identities using the Ward–Takahashi identities you should have

proved in the previous homework.
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Note: the renormalization condition for the finite part of the δ2 counterterm is similar

to the δZ in the λφ4 theory, but the conditions for the δ
(1γ)
1 and δ

(2γ)
1 counterterms are

more complicated. Similar to the ordinary QED, they follow from the net electric charge

of the scalar particle being exactly q, without any quantum corrections. But for the

scalar particle, we need two physical processes to measure the net charge, namely the

low-momentum Coulomb scattering, and also the Thompson scattering of low-frequency

photons.

Let’s rephrase these conditions in terms of the 1PI amplitudes for two scalars and one or

two photons. Let Gµ(p′, p) be the net 1PI amplitude for two scalars and one photon, in-

cluding the tree-level vertex, the loop corrections, and the δ
(1γ)
1 counterterm. Likewise, let

Gµν(p′, p; k1, k2) be the net 1PI amplitude for two scalars and two photons, also including

the tree-level vertex, the loop corrections, and the δ
(2γ)
1 counterterm. Take the limit of

zero photon momenta, then by Lorentz symmetry

Gµ(p′ = p ; k = 0) = −iq(p′ + p)µ × A(p2),

Gµν(p′ = p ; k1 = k2 = 0) = iq2gµν ×B(p2) + iq2pµpν × C(p2).
(6)

The net electric charge measured by the k → 0 limit of the Coulomb scattering is q×A(p2 =

m2), while the charge2 measured by the Thompson scattering is q2× 1
2B(p2 = m2). Thus,

to avoid quantum corrections to the physical electric charge we need

for p2 = m2, A = 1 and B = 2. (7)

The finite parts of the δ
(1γ)
1 and δ

(2γ)
1 counterterms follow from these on-shell conditions.
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