
Klein–Gordon Equation for the Quantum Fields

Thus far in class have introduced the (free) quantum scalar field ϕ̂(x, t), its canonically

conjugate quantum field π̂(x, t), their equal-time commutation relations[
ϕ̂(x, t), ϕ̂(x′, same t)

]
= 0,[

π̂(x, t), π̂(x′, same t)
]

= 0,[
ϕ̂(x, t), π̂(x′, same t)

]
= iδ(3)(x− x′),

(1)

and the Hamiltonian

Ĥ =

∫
d3x

(
1
2 π̂

2(x) + 1
2

(
∇ϕ̂(x)

)2
+ 1

2m
2 ϕ̂2(x)

)
. (2)

In this note I will show how the quantum version of the Klein-Gordon equation emerges from

the Heisenberg equations

i
∂φ̂(x, t)

∂t
= [φ̂(x, t), Ĥ], i

∂π̂(x, t)

∂t
= [π̂(x, t), Ĥ]. (3)

∗ ∗ ∗

Note that in the Heisenberg picture, the Hamiltonian density operator

Ĥ(x, t) = 1
2 π̂

2(x, t) + 1
2

(
∇ϕ̂(x, t)

)2
+ 1

2m
2 ϕ̂2(x, t) (4)

is time dependent, although this dependence cancels out from the net Hamiltonian operator

Ĥ(t) =

∫
d3x Ĥ(x, t) ≡ same Ĥ ∀t (5)

since i(d/dt)Ĥ = [Ĥ, Ĥ] ≡ 0. Consequently, in the commutators

[
φ̂(x, t), Ĥ

]
=

∫
d3x′

[
φ̂(x, t), Ĥ(x′, t′)

]
,

[
π̂(x, t), Ĥ

]
=

∫
d3x′

[
π̂(x, t), Ĥ(x′, t′)

]
(6)

we may evaluate the Hamiltonian density Ĥ(x′, t′) at any time t′ we like, as long it’s the same

t′ for all x′. However, since we know the commutation relations (1) between the quantum
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fields only at equal times t′ = t, we are naturally going to use Ĥ(x′, t) for the same time as

the field π̂(x, t) in the commutator (6), thus

[
φ̂(x, t), Ĥ

]
=

∫
d3x′

[
φ̂(x, t), Ĥ(x′, same t)

]
(7)

and
[
π̂(x, t), Ĥ

]
=

∫
d3x′

[
π̂(x, t), Ĥ(x′, same t)

]
. (8)

Let’s evaluate the first of these commutators. On the RHS of eq. (7) we have

[
φ̂(x, t), Ĥ(x′, t)

]
=

1

2

[
φ̂(x, t), π̂2(x′, t)

]
+

1

2

[
φ̂(x, t),

(
∇φ̂(x′, t)

)2]
+
m2

2

[
φ̂(x, t), φ̂2(x′, t)

]
.

(9)

Note that all fields here are taken at the same time t, so all the φ̂(x, t) and φ̂(x′, t) commute

with each other. Consequently, the last two terms on the RHS of eq. (9) vanish:

∀x,x′,
[
φ̂(x, t), φ̂(x′, t)

]
= 0 =⇒

[
φ̂(x, t), φ̂2(x′, t)

]
= 0

‖
⇓[

φ̂(x, t),∇φ̂(x′, t)
]

= 0 =⇒
[
φ̂(x, t),

(
∇φ̂(x′, t)

)2]
= 0.

(10)

In the remaining first term on the RHS of (9) we have[
φ̂(x, t), π̂(x′, t)

]
= iδ(3)(x′ − x), (11)

which is a singular function of x and x′ but as far as the Hilbert space of the quantum field

theory, it’s just a c-number that commutes with all the quantum fields.
?

Consequently,[
φ̂(x, t), π̂2(x′, t)

]
=
{[
φ̂(x, t), π̂(x′, t)

]
, π̂(x′, t)

}
= 2iδ(3)(x′ − x)× π̂(x′, t), (12)

hence [
φ̂(x, t), Ĥ(x′, t)

]
= iδ(3)(x′ − x)× π̂(x′, t), (13)

? In the Hilbert space of the quantum field theory, the operators are fields at different points, or modes
of quantum fields, or polynomials and power series in fields or their modes, etc., etc. But the space
coordinates such as x or x′ where the fields act are not operators in this space but mere labels of the
fields. Consequently, number-valued functions of x and x′, or even singular functions such as δ(3)(x−x′)
are not operators but mere c-numbers — they commute with all the fields.
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and therefore

[
φ̂(x, t), Ĥ

]
=

∫
d3x′ iδ(3)(x′ − x)× π̂(x′, t) = iπ̂(x, t). (14)

Finally, plugging this commutator into the Heisenberg equation for the φ̂ field we obtain

∂

∂t
φ̂(x, t) = π̂(x, t). (15)

Now let’s evaluate the Heisenberg equation for the π̂ field. On the RHS of eq. (8) we

have

[
π̂(x, t), Ĥ(x′, t)

]
=

1

2

[
π̂(x, t), π̂2(x′, t)

]
+

1

2

[
π̂(x, t),

(
∇φ̂(x′, t)

)2]
+
m2

2

[
π̂(x, t), φ̂2(x′, t)

]
,

(16)

and this time it’s the first term on the RHS that vanishes. Indeed, at equal times

[
π̂(x, t), π̂(x′, t)

]
= 0 =⇒

[
π̂(x, t), π̂2(x′, t)

]
= 0. (17)

For the third term we have

[
π̂(x, t), φ̂(x′, t)

]
= −iδ(3)(x′ − x), (18)

which is a singular function of x and x′ but a c-number in the Hilbert space of the quantum

fields, hence [
π̂(x, t), φ̂2(x′, t)

]
= −2iδ(3)(x′ − x) · φ̂(x′, t). (19)

Finally, for the second term in (16) we have

[
π̂(x, t),∇φ̂(x′, t)

]
=

∂

∂x′

[
π̂(x, t), φ̂(x′, t)

]
= −i ∂

∂x′
δ(3)(x′ − x) (20)

— again, a very singular function of x and x′ but a c-number in the Hilbert space, — so

[
π̂(x, t),

(
∇φ̂(x′, t)

)2]
= −2i

∂

∂x′
δ(3)(x′ − x) · ∇φ̂(x′, t). (21)
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Altogether we have

[
π̂(x, t), Ĥ(x′, t)

]
= 0 − i

∂

∂x′ δ
(3)(x′ − x) · ∇φ̂(x′, t) − im2δ(3)(x′ − x) · φ̂(x′, t) (22)

and hence

[
π̂(x, t), Ĥ

]
=

∫
d3x′

(
−i ∂
∂x′

δ(3)(x′ − x) · ∇φ̂(x′, t) − im2δ(3)(x′ − x) φ̂(x′, t)

)
〈〈 integrating the first term by parts 〉〉

=

∫
d3x′ iδ(3)(x′ − x)

(
∇2φ̂(x′, t) − m2φ̂(x′, t)

)
= i∇2φ̂(x, t) − im2φ̂(x, t) 〈〈@x rather than @x′ 〉〉.

(23)

Plugging this commutator into the Heisenberg equation for the π̂ field, we arrive at

∂

∂t
π̂(x, t) =

(
∇2 −m2

)
φ̂(x, t). (24)

Finally, combining the two first-order (in ∂/∂t) equations (15) and (24) for the quantum

fields φ̂ and π̂ we obtain the quantum version of the Klein–Gordon equation,

∂2

∂t2
φ̂(x, t) =

∂

∂t
π̂(x, t) =

(
∇2 −m2

)
φ̂(x, t), (25)

or equivalently (
∂2

∂t2
− ∇2 + m2

)
ϕ̂(x, t) = 0. (26)
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