
PATH INTEGRAL for the HARMONIC OSCILLATOR

In class, I have showed how to use path integral formalism to calculate the partition function

of a quantum system. Formally,

Z(T ) = Tr
[

e−iT Ĥ = Û(T, 0)
]

=

∫

dx0 U(x0, T ; x0, 0)

=

∫

dx0

x(T )=x0
∫∫∫

x(0)=x0

D′[x(t)] eiS[x(t)] =

x(T )=x(0)
∫∫∫

D[x(t)] eiS[x(t)]
(1)

where

S[x(t)] =

T
∫

0

dt
(

M
2 ẋ

2 − V (x)
)

(2)

is the Lagrangian action functional. Note the boundary conditions in the last path integral in

eq. (1): x(t) is required to be periodic in time, x(T ) = x(0) but there are no separate initial or

final conditions.

In class, I evaluated the path integral (1) for the harmonic oscillator, but I was deliberately

ignoring all issues of convergence and hoping that all the pre-exponential factors would somehow

take care of themselves. In this note I take care of all those pesky pre-exponential factors.

Actually, there are two separate convergence problems. Formally, the path integral is

defined via time discretization according to

x(T )=x(0)
∫∫∫

D[x(t)] eiS[x(t)] = lim
N→∞

(

MN

2πiT

)N/2 ∫

dx1 · · ·
∫

dxN exp
(

iSdiscr(x1, x2, . . . , , xN )
)

,

(3)

so there is an obvious convergence problem of the continuum-time limit of N → ∞. But even

for finite N there is a separate convergence problem of an N–dimensional integral of a rapidly-

oscillating but unimodular function eiS . In fact, for N ≥ 2 this integral does not converge, not

even conditionally, so it must be re-defined via analytic continuation.
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The usual analytic continuation keeps the xn = x(tn) real but makes the time itself imagi-

nary, t = −itE which runs from 0 to T = −iβ. In field theory, tE is called the Euclidean time

because the 4D spacetime spanned by (x1, x2, x3, x4 = tE) is Euclidean rather than Minkowski.

Going from the real Minkowski time t to the real Euclidean time tE = it turns the oscillating

phase function

exp

[

iSdiscr =
iT

N

N
∑

n=1

(

M

2

(

xn − xn−1

(T/N)

)2

− V (xn)

)]

(4)

of the (discretized) path integral into a real narrowly peaked function

exp

[

−Sdiscr
E = − β

N

N
∑

n=1

(

M

2

(

xn − xn−1

(β/N)

)2

+ V (xn)

)]

. (5)

Note that in the Euclidean action Sdiscr
E both kinetic-energy and potential-energy are positive,

so for each finite N we have an absolutely convergent integral

(

MN

2πβ

)N/2 ∫

dx1 · · ·
∫

dxN exp
(

−Sdiscr
E (x1, x2, . . . , , xN )

)

. (6)

This is generally true for all kinds of quantum systems and not just for the Harmonic oscillator.

The continuous-Euclidean-time limit N → ∞ is also well-behaved in most cases. Therefore, the

technical definition of the Minkowski-time path integral is nothing but the analytic continuation

of the Euclidean-time PI back to Minkowski time t = itE.

By the way, the continuous Euclidean-time action is

SE[x(tE)] =

β
∫

0

dtE

[

M

2

(

dx

dtE

)2

+ V (x)

]

, (7)

and the Euclidean partiction function is

ZE(β) = Tr
[

e−βĤ
]

=

x(β)=x(0)
∫∫∫

D[x(tE)] e
−SE[x(tE)], (8)

which looks exacly like a partition function in Statistical Mechanics. Regardless of the path

integral, it is well worth calculating in its own right.
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⋆ ⋆ ⋆

So, after all these preliminaries, let is calculate the Euclidean path integral for the harmonic

oscillator. The Euclidean action of the oscillator

SE =

β
∫

0

dtE
M

2

[

(

dx

dtE

)2

+ ω2x2

]

(9)

discretizes to

Sdiscr
E (x1, . . . , xN ) =

NM

2β

N
∑

n=1

[

(xn − xn−1)
2 +

ω2β2

N2
x2n

]

. (10)

which is a quadratic function of the integration variables x1, . . . , xN . Consequently, the dis-

cretized path integral

Z(β,N) =

(

MN

2πβ

)N/2 ∫

dNx exp
(

−Sdiscr
E (x1, . . . , xN )

)

(11)

is Gaussian and may be evaluated exactly. Unfortunately, the determinant of the quadratic

form (10) is rather formidable, so the best way to evaluate the integral (11) is to diagonalize

the action as a quadratic form.

The continuum-time Euclidean action is diagonalized via Fourier transform

x(tE) =

+∞
∑

k=−∞

β−1/2 e−2πikte/βyk ,

SE [x] =
M

2

∑

k

(

ω2 +
(2πk)2

β2

)

|yk|2:
(12)

note that the frequencies here are discrete because the Euclidean time is periodic; also, y∗k = y
−k.

For the discretized action (10) however, we need the discrete Fourier transform

xn =
1√
N

N
∑

k=1

e−2πikn/Nyk (13)

where the discrete frequencies k are defined modulo N , i.e. y0 ≡ yN , y−k ≡ yN−k, etc., etc.;

again, the frequency modes yk are complex, but the complete set of y1, . . . yN is self-conjugate
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as y∗k = y
−k. The key formula of the discrete Fourier transform is

∑

n

e−2πi(k−ℓ)n/N = NδmodN (k − ℓ). (14)

Consequently,

modN
∑

n

x2n =

modN
∑

n

x∗nxn =

modN
∑

k

y∗kyk (15)

and likewise

modN
∑

n

(xn − xn−1)
2 =

modN
∑

k

∣

∣

∣
1− e2πik/N

∣

∣

∣

2
y∗kyk (16)

where the latter follows from

xn − xn−1 =
modN
∑

k

N−1/2e−2πikn/N
(

1− e2πik/N
)

yk .

Thus

Sdiscr
E [yk] =

MN

2β

modN
∑

k

(

4 sin2
πk

N
+

ω2β2

N2

)

|yk|2, (17)

and therefore

Z(β, ω,N) =

(

MN

2πβ

)N/2

× J(N)×
∫

dNy e−Sdiscr

E (y)

= J(N)×
modN
∏

k

(

4 sin2
πk

N
+

ω2β2

N2

)−1/2 (18)

where J(N) is the Jacobian of the discrete Fourier transform (13). To evaluate this Jacobian,

we perform the Fourier transform twice:

yk =

modN
∑

m

N−1/2e−2πimk/Nzm, xn =

modN
∑

k

N−1/2e−2πikn/Nyk = (−1)nzn , (19)

4



which immediately tells us that

[

det
∂xn
∂yk

]2

= det
∂xn
∂zm

= ±1.

Consequently, J = | det(∂xn/∂yk)| = 1 and

Z(β, ω,N) =

modN
∏

k

(

4 sin2
πk

N
+

ω2β2

N2

)−1/2

. (20)

At this point, let me use without proof a somewhat obscure mathematical formula

N−1
∏

k=1

(

2 sin
πk

N

)

= N, (21)

which allows me to re-write the discretized partition function as

Z(β, ω,N) =
N

ωβ
×

N−1
∏

k=1

(

4 sin2
πk

N
+

ω2β2

N2

)−1/2

=
1

ωβ
×

N−1
∏

k=1

(

1 +
ω2β2

4N2 sin2 πk
N

)−1/2
(22)

To evaluate the large N limit of this partition function (physically, the continuous time

limit), we approximate 4N2 sin2(πk/N) ≈ (2πk)2 for k ≪ N , and likewise 4N2 sin2(πk/N) ≈
(2π(N − k))2 for (N − k) ≪ N , while for the remaining modes sin2(πk/N) = O(1) and hence

1 +
ω2β2

4N2 sin2 πk
N

≈ 1.

Consequently,

Z(β, ω,N) −−→
N≫1

1

ωβ
×

∏

1≤k≪N

(

1 +
ω2β2

(2πk)2

)−1/2

×
∏

1≤(N−k)≪N

(

1 +
ω2β2

(2π(N − k))2

)−1/2

−−−→
N→∞

1

ωβ
×

∞
∏

k=1

(

1 +
ω2β2

(2πk)2

)−1

.

(23)

It remains to evaluate the infinite product in the last formula. Consider Z(ωβ) as an

analytic function of a complex argument. Whenever any factor of on the right hand side has
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a zero in the complex (ωβ) plane, Z(ωβ) has a zero and ditto for the poles. Also, the product

converges, so these are the only poles and zeroes of the Z(ωβ) The individual factors at hand

are 1/(ωβ) and

1

1 + ω2β2

(2πk)2

=
(2πk)2

(ωβ + 2πki)× (ωβ − 2πki)

for k = 1, 2, 3, . . .. Thus, the Z(ωβ) function has no zeroes and it has poles at ωβ = 2πki for

all integers k (positive, negative and zero). In other words, it has the same poles and zeroes as

the 1/ sinh(ωβ/2) function and indeed, there is a well known formula

sinh(z) = z

+∞
∏

k=1

(

1 +
z2

(πk)2

)

.

Thus, at the end of the long path-integral calculation, we arrive at a rather simple formula

ZE(β) =
1

2 sinh(ωβ/2)
(24)

in Euclidean time, and by analytic continuation to Minkowski time

ZM (T ) =
1

2i sin(ωT/2)
. (25)

Expanding the latter partition function into a sum of e−iET phases, we have

1

2i sin(ωT/2)
=

e−iωT/2

1− e−iωT
=

∞
∑

n=0

1× exp
(

−iT × (n+ 1
2)ω
)

, (26)

which immediately tells us that the harmonic oscillator has non-degenerate energy spectrum

with eigenvalues En = (n + 1
2)ω. Of course, we new that long before this calculation, but it

confirms that (properly applied) path-integral formalism does yield the correct spectrum.
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