
QCD β Function

In these notes, I shall calculate to 1-loop order the δ3 counterterm for the gluons and

hence the β functions of a non-abelian gauge theory such as QCD. For simplicity, I am going

to refer to the gauge fields as ‘gluons’ and to the fermions as ‘quarks’, but I am going to allow

for any simple gauge group G and for the fermions in any complete multiplet of G. Once I

finish the calculation, I’ll spell out the group factors for G = SU(Nc) and Nf fundamental

multiplets of quarks, but until then I’ll keep all the group factors generic.

As explained in class — see also my notes on minimal subtraction — the β function for

the gauge coupling can be obtained from the infinite parts of the counterterms as

dg(µ)

d logµ
= β(g) = 2g ×Nloops × Residue of

1

ǫ
pole of

[

δ1 − δ2 − 1
2δ3

]

. (1)

In class, I have also calculated the δ2 and the δ1 counterterms for the quarks to one-loop

order: in the Feynman gauge (ξ = 1) for the gluons and the MS regularization scheme,

δ2(quark) = −
g2

16π2
×

1

ǫ
× C

(

quark

multiplet

)

, (2)

δ1(quark) = −
g2

16π2
×

1

ǫ
×

[

C

(

quark

multiplet

)

+ C(adjoint)

]

. (3)

Note: in theories where the fermions form several different multiplets of the gauge group, each

multiplet would have its own δ2 and δ1 counterterms, and they would differ from multiplet

to multiplet. However, all the multiplets would have the same difference

δ1 − δ2 = −
g2

16π2
×

1

ǫ
× C(adjoint). (4)

In light of eq. (1), this means that all the fermions couple to the gauge fields with exactly

the same renormalized coupling g(µ).

In these notes, I shall calculate the δ3 counterterm to the one-loop order; once I have it,

eqs. (1) and (4) would give me the (one-loop) β(g).
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At the one-loop order, the self-energy corrections to the gluons come from 5 diagrams:

(1) (2) (3) (4) (5)

where the fifth diagrams’s contribution

Σµν
5 (k) = −δ3 ×

(

k2gµν − kµkν
)

(5)

cancels the UV divergences of the first 4 diagrams. So let’s calculate those divergences.

The first diagram — the quark loop — gives us

iΣµν
1 (k) = −

∫

d4p

(2π)4
tr

(

(−igγµ)
i

6p−m+ i0
(−igγν)

i

6p+6k −mi0

)

× tr
(

ta(q) t
b
(q)

)

(6)

where the first trace is over the Dirac indices while the second trace is over the quarks’ colors

and flavors. For a single quark multiplet (m) of the gauge group G

tr
(

ta(m) t
b
(m)

)

= δab × R(m) (7)

where R(m) is the index of the multiplet (m). For several quark multiplets, their contribu-

tions add up, thus

tr
(

ta(q) t
b
(q)

)

= δab × Rnet = δab ×
∑

quark
multiplets

R(multiplet). (8)

In particular, in QCD the quarks comprise Nf copies of a fundamental N multiplet of the
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SU(N) gauge group — one fundamental multiplet for each flavor — hence

Rnet = Nf ×R(fundamental) = Nf ×
1

2
. (9)

Apart from this group factor, the rest of the quark loop (6) looks exactly like the electron

loop in QED. We have calculated that loop back in February — cf. my notes — so let me

simply recycle the result in the present context:

Σµν
1 (k) =

(

k2gµν − kµkν
)

×
−g2

12π2
× Rnet ×

(

1

ǫ
+ finite

)

. (10)

Consequently, the counterterm needed to cancel this divergence is

δ3(1
st) = −

g2

16π2
×

1

ǫ
×

4

3
Rnet (11)

for a general gauge theory; for QCD

δ3(1
st) = −

g2

16π2
×

1

ǫ
×

2

3
Nf . (12)

Now consider the second diagram — the gluon loop

µ ν

a b

(α, c)

(β, d)

k −→ k −→

p1

p2

(13)

Evaluating this diagram in the Feynman gauge, we get

iΣµν
2 (k) =

1

2

∫

d4p1
(2π)4

−i

p21 + i0
×

−i

p22 + i0
×−gfacdV µαβ(k, p1, p2)×−gf bcdV ναβ(−k,−p1,−p2)

(14)

where 1
2 is the symmetry factor due to 2 similar gluon propagators, and the V ’s are the
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momentum- and Lorentz-index-dependent parts of the 3–gluon vertices,

V µαβ(k, p1, p2) = gαβ(p1 − p2)
µ + gβµ(p2 − k)α + gµα(k − p1)

β ,

V ναβ(−k,−p1,−p2) = −V ναβ(k, p1, p2).
(15)

Let’s start with the group factor in eq. (14). As explained in class,

∑

bc

fabc × f bcd =
∑

bc

(

−iT a
adj

)bc
×

(

+iT a
adj

)cb
= tr

(

T a
adjT

d
adj

)

= δab × R(adjoint); (16)

for an SU(N) gauge group, R(adjoint) = N . For a general gauge group,

R(adjoint) = C(adjoint), often denoted C(G). (17)

Plugging the group factor into eq. (14) and assembling all the constant factors, we obtain

Σµν
2 (k) = −i

g2

2
C(G)×

∫

d4p1
(2π)4

N µν
2

(p21 + i0)× (p22 + i0)
(18)

where the numerator is

N µν
2 = −V µαβ(k, p1, p2)× V ναβ(−k,−p1,−p2) = +V µαβ(k, p1, p2)× V ναβ(k, p1, p2)

= D × (p1 − p2)
µ(p1 − p2)

ν + gµν × (p2 − k)2 + gµν × (k − p1)
2

+ (p1 − p2)
(µ(p2 − k)ν) + (p2 − k)(µ(k − p1)

ν) + (k − p1)
(µ(p1 − p2)

ν).
(19)

As usual, the first step in evaluating the momentum integral like (18) is to simplify the

denominator using the Feynman parameters. By momentum conservation p2 ≡ −k − p1,

hence

1

(p21 + i0)(p22 + i0)
=

1
∫

0

dx
[

(1− x)p21 + x(p1 + k)2 + i0
]2 =

1
∫

0

dx

[ℓ2 −∆+ i0]2
(20)

where

ℓ = p1 + xk and ∆ = −x(1 − x)k2. (21)

Plugging this denominator int eq. (18) we get

Σµν
2 (k) = −i

g2

2
C(G)×

1
∫

0

dx

∫

d4ℓ

(2π)4
N µν

2

[ℓ2 −∆+ i0]2
, (22)

and now we need to re-express the numerator in terms of the shifted momentum ℓ. Using
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p1 = +ℓ− xk and p2 = −ℓ− (1− x)k, we obtain

p1 − p2 = 2ℓ − (2x−1)k, p2 − k = −ℓ + (x−2)k, k − p1 = −ℓ + (x+1)k, (23)

and hence

N µν
2 = D ×

(

2ℓ− (2x− 1)k
)µ(

2ℓ− (2x− 1)k
)ν

+ gµν ×
[

(−ℓ + (x− 2)k)2 + (−ℓ+ (x+ 1)k)2
]

+ (2ℓ− (2x− 1)k)(µ(−ℓ+ (x− 2)k)ν) + (−ℓ + (x− 2)k)(µ(−ℓ+ (x+ 1)k)ν)

+ (−ℓ+ (x+ 1)k)(µ(2ℓ− (2x− 1)k)ν)

(24)

This whole big mess is a quadratic polynomial in ℓ and k, but the mixed terms like (ℓk) or

ℓµkν are odd with respect to ℓ → −ℓ and hence cancel out from the momentum integral (22).

Thus, keeping only the terms carrying two or zero ℓ’s, we arrive at

N µν
2

∼= D ×
[

4ℓµℓν + (2x− 1)2kµkν
]

+ gµν ×
[

2ℓ2 + ((x− 2)2 + (x+ 1)2)k2
]

− 4ℓµℓν − 2(2x− 1)(x− 2)kµkν + 2ℓµℓν + 2(x− 2)(x+ 1)kµkν

− 4ℓµℓν − 2(2x− 1)(x+ 1)kµkν

= gµν ×
[

2ℓ2 + (2x2 − 2x+ 5)k2
]

+ (4D − 6)ℓµℓν

+
[

(D − 6) − (4D − 6)x(1− x)
]

× kµkν .

(25)

Moreover, in the context of the momentum integral (22)

ℓµℓν ∼=
ℓ2

D
× gµν , (26)

hence

N µν
2

∼=
(

k2gµν − kµkν
)

×
[

(6−D) + (4D − 6)x(1− x)
]

+ gµν ×

((

6−
6

D

)

× ℓ2 + (D − 1)(1− 4x+ 4x2)× k2
)

(27)

where I have re-arranged the k2 terms so that the first line has the right tensor structure for

the gluon’s self-energy corrections. The second line has wrong tensor structure, and it does

not integrate to zero, but we shall see that it cancels against similar bad terms from the two

remaining diagrams.

5



To see how the cancellation works, let us postpone taking the momentum integral (22)

until we have evaluated the sideways gluon loop and the ghost loop diagrams and brought

them to a similar form

Σµν
3 (k) = −i

g2

2
C(G)×

1
∫

0

dx

∫

d4ℓ

(2π)4
N µν

3

[ℓ2 −∆+ i0]2
, (28)

Σµν
4 (k) = −i

g2

2
C(G)×

1
∫

0

dx

∫

d4ℓ

(2π)4
N µν

4

[ℓ2 −∆+ i0]2
, (29)

for some numerators N µν
3 and N µν

4 , then we are going to add up the numerators,

N µν = N µν
2 + N µν

3 + N µν
4 , (30)

and only then take the momentum integral.

For the sideways gluon loop

(a, µ)

(b, ν)

(c, γ)

(d, δ)

p

(31)

we have

iΣµν
3 (k) =

1

2

∫

d4p

(2π)4
−igγδδ

cd

p2 + i0
×−ig2







fabef cde(gµγgνδ − gµδgβγ)

+ facef bde(gµνgγδ − gµδgγν)

+ fadef bce(gµνgδγ − gµγgδν)






(32)

where the overall factor 1
2 comes from the symmetry of the propagator. The group factors
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in this amplitude evaluate to

δcd × fabef cde = 0,

δcd × facef bde = facef bce = C(G)× δab,

δcd × fadef bce = facef bce = C(G)× δab,

(33)

— cf. eq. (16) — hence

gγδδ
cd× [· · ·] = C(G)δab×

(

Dgµν − gµν + Dgµν − gµν
)

= 2(D−1)C(G)×δabgµν . (34)

Plugging this result into eq. (32), we obtain

Σµν
3 (k) = +ig2C(G)× (D − 1)gµν

∫

d4p

(2π)4
1

p2 + i0
(35)

Instead of directly evaluate the momentum integral here, we are going to combine the inte-

grand with the other one-loop diagrams. Since this diagram has only one propagator rather

than two, we may identify the loop momentum p here as either p1 or p2 = −p1 − k — as

long as our UV regulator allows constant shifts of the integration variable, both choices are

equivalent. For symmetry’s sake, let’s take the average between the two choices and identify

1

p2 + i0
=

1/2

p21 + i0
+

1/2

p22 + i0
=

p21 + p22
2(p21 + i0)(p22 + i0)

=

1
∫

0

dx
(ℓ− xk)2 + (−ℓ− (1− x)k)2

2[ℓ2 −∆+ i0]2

(36)

Consequently, the amplitude (35) takes form (28) for the numerator

N µν
3 = −(D−1)gµν×

[

(ℓ−xk)2 + (−ℓ−(1−x)k)2
]

= −(D−1)gµν×
[

2ℓ2 + (1−2x+2x2)k2
]

.

(37)

Finally, there the ghost loop diagram

µ ν

a b

c

d

k −→ k −→

p1

p2

(38)
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which evaluates to

iΣµν
4 (k) = −

∫

d4p1
(2π)4

i

p21 + i0
×

i

p22 + i0
×−gfacdpµ2 ×−gf bdcpν1 . (39)

Note: the ghost propagators are oriented and go in opposite directions, so this diagram does

not have the symmetry factor 1
2 . Instead, it carries an overall minis sign for the fermionic

loop. Another minus sign hides in the group factor:

facdf bdc = −facdf bcd = −C(G)× δbc (40)

Consequently,

Σµν
4 (k) = −i

g2

2
C(G)×

∫

d4p1
(2π)4

−2pµ2p
ν
1

(p21 + i0)(p22 + i0)
(41)

for p2 = +p1 + k. Combining the two denominator factors via the Feynman parameter

integral, this amplitude takes for (29) for the numerator

N µν
4 = −2pµ2p

ν
1 = −2(ℓ− xk + k)µ(ℓ− xk)ν ∼= −2ℓµℓν + 2x(1− x)kµkν

∼= −
2

D
ℓ2 × gµν + 2x(1− x)k2gµν − 2x(1− x)

(

k2gµν − kµkν
)

.

(42)

Now let’s add up the numerators of the three diagrams:

N µν = N µν
2 + N µν

3 + N µν
4

=
(

k2gµν − kµkν
)

×
[

(6−D) + (4D − 6)x(1− x) + 0 − 2x(1− x)
]

+ gµνℓ2 ×

[

6 −
6

D
− 2(D − 1) −

2

D

]

+ gµνk2 ×
[

(D − 1)(1− 4x+ 4x2) − (D − 1)(1− 2x+ 2x2) + 2x(1− x)
]

=
(

k2gµν − kµkν
)

×
[

(6−D) + 4(D − 2)x(1− x)
]

+ gµνℓ2 ×
−2(D − 2)2

D
+ gµνk2 × 2(2−D)x(1− x)

≡
(

k2gµν − kµkν
)

×Ngood + gµν ×Nbad

(43)

where

Ngood(x) = (6−D) + 4(D − 2)x(1− x),

Nbad(x, ℓ) = −2(D − 2)×

(

D − 2

D
ℓ2 − ∆

)

,
(44)

for the same ∆ = −x(1 − x)k2 as in the denominator of the momentum integral.
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The bad-tensor-structure term in the net numerator does not vanish, but it integrates

to zero. Or rather, the dimensionally regularized integral of the bad term integrates to zero

in any dimension D for which the integral converges (which takes D < 2). Indeed,

∫

dDℓ

(2π)D
Nbad(ℓ)

[ℓ2 −∆+ i0]2
=

= 2(D − 2)i

∫

dDℓE
(2π)D

D−2
D ℓ2E + ∆

(ℓ2E +∆)2

= 2(D − 2)i

∫

dDℓE
(2π)D

(

(D − 2)/D

ℓ2e +∆
+

(2/D)∆

(ℓ2 +∆)2

)

=
2(D − 2)i

D

∫

dDℓE
(2π)D

∞
∫

0

dt
(

(D − 2) + 2∆× t
)

× exp
(

−t(ℓ2E +∆)
)

=
2(D − 2)i

D

∞
∫

0

dt
(

(D − 2) + 2∆× t
)

× e−t∆ ×

(
∫

dDℓE
(2π)D

e−tℓ2E = (4πt)−D/2

)

=
2(D − 2)

D(4π)D/2
×
(

(D − 2)× Γ
(

1− D
2

)

×∆
D

2
−1 + 2∆× Γ

(

1− D
2

)

×∆
D

2
−2

)

=
4(D − 2)

D(4π)D/2
×∆

D

2
−2 ×

(

(

D
2 − 1

)

γ
(

1− D
2

)

+ Γ
(

2− D
2

)

= 0
)

.

(45)

Thus, the net vacuum polarization tensor for the gluons does have the right k dependence,

Σµν
2+3+4(k) =

(

k2gµν − kµkν
)

×Π2+3+4(k
2) (46)

where

Π2+3+4 = −ig2
C(G)

2
×

1
∫

0

dx

∫

d4ℓ

(2π)4
Ngood

(ℓ2 −∆+ i0)2
. (47)

Since the numerator Ngood does not depend on the loop momentum ℓ but only on the

Feynman parameter x, the momentum integral here becomes the familiar

∫

d4ℓ

(2π)4
1

(ℓ2 −∆+ i0)2
=

∫

d4ℓE
(2π)4

+i

(ℓ2E +∆)2
−−→
DR

i

16π2

(

1

ǫ
+ finite

)

. (48)

Consequently,

Π2+3+4 = +
g2C(G)

32π2

(

1

ǫ
+ finite

)

×

1
∫

0

dxNgood(x), (49)
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and to get the divergent part of the amplitude we may evaluate the Feynman parameter

integral for D = 4. Thus

Ngood(x) → 2 + 8x(1− x) =⇒

1
∫

0

dxNgood(x) →
10

3
, (50)

hence

Π2+3+4 = +
g2

16π2
×

5C(G)

3
×

(

1

ǫ
+ finite

)

, (51)

and the δ3 counterterm that cancels this divergence is

δ3(2
nd + 3rd + 4th) = +

g2

16π2
×

5C(G)

3
×

1

ǫ
. (52)

Altogether — including the quark loops’ contribution (11) — the one-loop δ3 counterterm

is

δone loop3 =
g2

16π2

(

5

3
C(G) −

4

3
Rnet(quarks)

)

×
1

ǫ
. (53)

Consequently, applying eqs. (1) and (4), we obtain

(

δ1 − δ2 − 1
2δ3

)

1 loop
=

g2

16π2

(

−C(G) −
5

6
C(G) +

2

3
Rnet(quarks)

)

×
1

ǫ
(54)

and therefore

β(g)1 loop =
g3

16π2

(

−
11

3
C(G) +

4

3
Rnet(quarks)

)

. (55)

For QCD and QCD-like theories with SU(Nc) gauge group and Nf flavors of fundamental

multiplets of quarks,

β(g)1 loop =
g3

16π2

(

−
11

3
Nc +

2

3
Nf

)

. (56)
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For completeness sake, let me give you without proof the formula for the one-loop beta

function for any gauge theory coupled to several kinds of ‘matter’ fields: Dirac fermions

like the quarks, but also chiral Weyl fermions (left-handed or right-handed only), Majorana

fermions, complex scalars, or real scalars. In general, the Dirac fermions, Weyl fermions, and

complex scalars can be in any multiplets of the gauge group G, while the Majorana fermions

and real scalars must be in real multiplets of G. Altogether,

β(g)1 loop =
g3

16π2
×

∑

all physical
multiplets

R(multiplet)×















































−11
3 for the gauge fields,

+4
3 for Dirac fermions,

+2
3 for Majorana fermions,

+2
3 for chiral Weyl fermions,

+1
3 for complex scalar fields,

+1
6 for real scalar fields.

(57)

Note: the gauge fields’ contribution here includes both the vector fields Aa
µ themselves and

the ghosts ca and āa, so do not count the ghosts as separate multiplets.

Also note that only the non-abelian gauge fields give negative contributions to the β

function, all other fields’ contributions are positive. Consequently, only the non-abelian

gauge theories can be asymptotically free, and only when there are not too many fermionic

or scalar fields coupled to the gauge fields. For example, QCD-like theory are asymptotically

free only for Nf < 11
2 Nc.

Finally, a note on theories with product gauge groups G = G1 ⊗ G2 ⊗ · · ·. In such

theories, each component group Gi — abelian or non-abelian — has its own gauge coupling

gi. At the one-loop level, the beta functions of each gi are independent from each other (and

also from the other couplings like Yukawa of λφ4),

∀i, βi =
g3i

16π2
× const +

g3i
(4π)4

× O(g2i , other g
2
j , yukawa

2, λ) (58)

Moreover, the constant factors in the one-loop terms are obtained exactly as in eq. (57)

where we count multiplets of each Gi without paying attention to the other gauge groups

Gj . For example, a (m,n) multiplet of SU(m)⊗SU(n) counts as m fundamental multiplets

of SU(n) when you calculate the βn — or as n fundamental multiplets of SU(m) when you

calculate the βm.
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