
QCD Feynman Rules

The classical chromodynamics has a fairly simple Lagrangian

L = LYang−Mills + Lquarks = −1
4

∑

µ,ν,a

(F a
µν)

2 +
∑

i,f

Ψif (i6D +mf )Ψ
if (1)

where i denotes the color of a quark and f its flavor. DµΨ
i = ∂µΨ

i + igAa
µ(t

a)ijΨ
j where ta are

matrices representing the gauge group generators in the quark representation; in QCD the quarks

belong to the fundamental 3 representation of the SU(3)C so ta is 1
2 ×Gell-Mann matrix λa.

The Quantum ChromoDynamics is more complicated, even at the Lagrangian level: including

the gauge-fixing and the ghost terms as well as the counterterms, we have

L = −1

4
(F a

µν)
2 − 1

2ξ
(∂µA

µ)2 + ∂µc̄
aDµca +

∑

f

Ψif (i6D +mf )Ψ
if

− δ3

4
(∂µA

a
ν − ∂νA

a
µ)

2 + gδ
(3g)
1 fabcAb

µA
c
ν∂µA

aν − g2δ
(4g)
1

4
(fabcAb

µA
c
ν)

2

+ δ
(gh)
2 ∂µc̄

a∂µca − gδ
(gh)
1 fabc∂µc̄

aAbµcc

+
∑

f

Ψif

(

iδ
(qf )
2 6∂ + δ

(qf )
m − gδ

(qf )
1 6Aata

)

Ψif .

(2)

In this formula, all sums over the colors (fundamental or adjoint) are implicit, as well as sums

over the Lorentz or Dirac indices. But the sums over quark flavors are explicit because the quark

masses depend on the flavor; the quark-related counterterms δ
(qf )
2 , δ

(qf )
1 , and δ

(qf )
m could also be

flavor-dependent.

QCD Feynman rules follow from expanding the Lagrangian (2) into the free quadratic terms

and the interaction terms (cubic, quartic, and all the counterterms). Thus we have:

— Gluon propagator

a

µ

b

ν
=

−iδab

k2 + i0

(

gµν + (ξ − 1)
kµkν

k2 + i0

)

. (3)

— Quark propagator

f

i

f ′

j
=

iδijδ
f
f ′

6p−mf + i0
. (4)
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— Ghost propagator

a b
=

iδab

k2 + i0
. (5)

• Three-gluon vertex

a

α

k1

b
β

k2

c
γ

k3

= −gfabc
[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

. (6)

• Four-gluon vertex

a
α b

β

c
γd

δ

= −ig2







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (7)

• Quark-gluon vertex

a

µ

i f

j f ′

= −igγµ × δ
f ′

f × (ta)ji . (8)
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• Ghost-gluon vertex

a

µ

b

c

p

p′

= −gfabcp′µ. (9)

In addition, the renormalized theory has a whole bunch of the counterterm vertices:

∗ Two-gluon counterterm vertex

a
µ

b
ν

= −iδ3δ
ab
(

k2gµν − kµkν
)

. (10)

∗ Three-gluon counterterm vertex

a

α

k1

b
β

k2

c
γ

k3

= −gδ
(3g)
1 ×fabc

[

gαβ(k1 − k2)
γ + gβγ(k2 − k3)

α + gγα(k3 − k1)
β
]

.

(11)

• Four-gluon counterterm vertex

a
α b

β

c
γd

δ

= −ig2δ
(4g)
1 ×







fabef cde(gαγgβδ − gαδgβγ)

+ facef bde(gαβgγδ − gαδgγβ)

+ fadef bce(gαβgδγ − gαγgδβ)






. (12)

∗ Two-quark counterterm vertex

f

i

f ′

j
= δ

f ′

f δ
j
i ×

(

iδ
(qf )
m − iδ

(qf )
2 ×6p

)

. (13)
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∗ Quark-gluon counterterm vertex

a

µ

i f

j f ′

= −igδ
(qf )
1 δ

f ′

f × γµ × (ta)ji . (14)

∗ Two ghost counterterm vertex

a b = δab × iδ
(gh)
2 × k2. (15)

∗ Ghost-gluon counterterm vertex

a

µ

b

c

p

p′

= −gδ
(gh)
1 × fabcp′µ. (16)

⋆ Remember that the ghost fields are fermionic, so each closed loop of ghost propagators

carries a minus sign.

⋆ The flavor f remains constant along any quark line, open or closed. For an open line,

f matches both the incoming and the outgoing quarks (or antiquarks); for closed quark

loops, we sum over all the flavors.

⋆ The color of a quark changes from propagator to propagator since the quark-quark-gluon

vertices carry the (ta)ji factors. In matrix notations, the ta generators should be multiplied
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right-to-left in the order of arrows on the quark line, for example

c b a

j i

=⇒
(

tctbta
)j

i
× other factors.

For the closed quark lines, one starts at an arbitrary vertex, multiplies all the genera-

tors right-to-left in the order of the arrows, than takes the trace over the color indices,

tr(· · · tctbta).

Ward Identities

QCD has weaker Ward identities than QED. In particular, consider the on-shell scattering

amplitudes involving the longitudinally polarized gluons. When one gluon is longitudinal and all

other gluons are transverse, the amplitude vanishes. But when two or more gluons are longitudi-

nal, the amplitude does not vanish; instead, it is related to the amplitudes involving the external

ghosts instead of the longitudinal gluons.

As an example, consider the tree level annihilation of a quark and an antiquark into a pair

of gluons, qq̄ → gg. In QED there are two tree diagrams for the e−e+ → γγ annihilation, but in

QCD there are three diagrams:

(17)

Let the incoming quark has momentum p1 and color i, the incoming antiquark — momentum p2

and color j, the first outgoing gluon — momentum k1, polarization e
µ
1 , and adjoint color a, and
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the second quark — k2, e
ν
2 , and b. Then the three diagrams evaluate to

iM1 = v̄(p2) (−igγνe∗2ν)
i

6q1 −m
(−igγµe∗1µ) u(p1)×

(

tbta
)j

i

iM2 = v̄(p2) (−igγµe∗1µ)
i

6q2 −m
(−igγνe∗2ν) u(p1)×

(

tatb
)j

i

iM3 = v̄(p2) (−igγκ) u(p1)× (tc)ji ×
−igκλ

(k1 + k2)2
×

× (−g)fabc
[

gµν(−k1 + k2)
λ + gνλ(−k2 − (k1 + k2))

µ + gλµ((k1 + k2) + k1)
ν
]

× e∗1µe
∗

2ν ,

Mnet
tree = M1 + M2 + M3 .

(18)

Clearly, each term here is O(g2) and each term includes the polarization vectors for the two

gluons, thus

M = e∗1µe
∗

2ν ×Mµν . (19)

So let us check the Ward identity k1µ ×Mµν = 0.

For the first diagram’s amplitude we have

k1µ ×Mµν
1 = −g2

(

tbta
)j

i
× v̄γν

1

6q1 −m
6k1u. (20)

In the second factor here, q1 = p1 − k1, hence

1

6q1 −m
6k1 =

1

6q1 −m
(6p1−6q1) = −1 +

1

6q1 −m
(6p1 −m), (21)

which for the on-shell quark gives

1

6q1 −m
6k1 u(p1) = −u(p1) + 0 (22)

because (6p1 −m)u(p1) = 0. Thus,

k1µ ×Mµν
1 = +g2

(

tbta
)j

i
× v̄(p2)γ

νu(p1). (23)
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Likewise, for the second diagram

k1µ ×Mµν
2 = −g2

(

tbta
)j

i
× v̄ 6k1

1

6q2 −m
γνu. (24)

where in the second factor

q2 = k1 − p2 =⇒ 6k1
1

6q2 −m
= 1 − (6p2 +m)

1

6q2 −m
=⇒ v(p2) 6k1

1

6q2 −m
= +v(p2) − 0,

(25)

thus

k1µ ×Mµν
2 = −g2

(

tatb
)j

i
× v̄(p2)γ

νu(p1). (26)

In QED, k1µ ×Mµν
1 and k1µ ×Mµν

1 would have canceled each other, but in QCD eqs. (23)

and (26) carry different color-dependent factors. So instead of cancellation, we have

k1µ ×Mµν
1+2 = g2v̄γνu×

(

tbta − tatb
)j

i
= g2v̄γνu×−ifabc

(

tc
)j

i
. (27)

But the net color-dependent factor is similar to the third amplitude, so there is a hope that the

Ward identity might work when all three diagrams are put together.

For the third diagram we have

k1µ ×Mµν
3 = −ig2fabc

(

tc
)j

i
× v̄γλu× 1

(k1 + k2)2
×

× k1µ ×
[

gµν(k2 − k1)
λ + gνλ(−k1 − 2k2))

µ + gλµ(2k1 + k2)
ν
]

.

(28)

On the second line here

k1µ × [· · ·] = kν1 (k2 − k1)
λ + gνλ(−k21 − 2k1k2) + kλ1 (2k1 + k2)

ν

= −gλν
(

(k1 + k2)
2 − k22

)

+
[

kν1k
ν
2 + kλ1k

ν
2 + kν1k

λ
2

]

〈〈 on shell 〉〉

= −gλν(k1 + k2)
2 + (k1 + k2)

λ(k1 + k2)
ν − kλ2k

ν
2 .

(29)

Plugging the first term here into eq. (28), we obtain

k1µ ×Mµν
3,a = +ig2fabc

(

tc
)j

i
× v̄(p2)γ

νu(p1), (30)

which precisely cancels the contributions of the first and the second diagrams, cf. eq. (27).
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For the second term in eq. (29) we have

k1µ ×Mµν
3,b = −ig2fabc

(

tc
)j

i
× (k1 + k2)

ν

(k1 + k2)2
× v̄(6k1+6k2)u (31)

where the last factor vanishes. Indeed, k1 + k2 = p1 + p2, hence for the on-shell quark and

antiquark

v̄(p2)(6k1+6k2)u(p1) = v̄(p2)(6p2 +m)u(p1) + v̄(p2)(6p1 −m)u(p1) = 0 + 0. (32)

But the third term’s contribution does not vanish, which breaks the Ward identity for the net

QCD amplitude:

k1µ ×Mµν
net = k1µ ×Mµν

3,c = +ig2fabc
(

tc
)j

i
× v6k2u× 1

(k1 + k2)2
× kν2 6= 0. (33)

However, the net violation of the identity is proportional to the kν2 factor. Therefore, when

we contract the amplitude Mµν
net with the polarization vector of the second gluon, we obtain

k1µ ×Mµν
nete

∗

2ν = [· · ·]× (k2e
∗

2), (34)

which vanishes is the second gluon is transversely polarized! This agrees with the weakened Ward

identity of QCD: Amplitudes involving one longitudinal gluon vanish if all the other gluons are

transverse, but if two (or more) gluons are longitudinal, the amplitude does not have to vanish.

Instead, such amplitudes are related to the amplitudes involving ghosts and antighosts.

Indeed, consider the annihilation amplitude of two quarks into two longitudinal gluons,

M(qq̄ → gLgL). In light of eq. (33),

M(qq̄ → gLgL) =
ig2

s
fabc

(

tc
)j

i
× v(p2)6k2u(p1) (35)

where s = (k1 + k2)
2 = (p1 + p2)

2 is the center-of-mass energy.
⋆
Let’s compare this amplitude to

the annihilation of the same quark and the same antiquark into a ghost and antighost. At the

⋆ To be precise, in Minkowski space, there two possible longitudinal polarizations for a gluon moving in
the direction n, namely eµ± = (1,±n)/

√
2. The non-vanishing amplitude (35) is for one gluon having

longitudinal polarization L+ (i.e., parallel to the kµ) while the other gluon has L−. For other combinations
of longitudinal polarizations — both L+ or both L− — the amplitude vanishes.
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tree level, there is only one diagram for the later process,

thus

iMtree(q + q̄ → gh + gh) = v̄(p2)(−igγλ)u(p1)× (tc
)j

i
× −igλν

s
×−gfabckν2 . (36)

By inspection,

M(q + q̄ → gh + gh) = M(qq̄ → gL + gL). (37)

In the next set of notes we shall learn that such relations stems from the BRST symmetry, but

right now we may use eq. (36) to understand how the physical cross-sections work in QCD.

The ghosts violate the spin-statistics theorem, so we must give up one one of its assumptions:

relativity, positive particle energies, or the positive norm in the Hilbert space. The correct choice

is to give up on the norm positivity in the extended Hilbert space including both physical and

unphysical quanta — only the physical states must have positive norms, while the norm of the

ghosts states comes out negative. Consequently, the cross-section for the annihilation-into-ghosts

process comes out negative:

dσ

dΩ
= − |M|2

64π2s
. (38)

By themselves, the negative cross-sections are impossible, but they make sense in the context of

net unpolarized cross-section where the final states could be either gluons or ghosts,

dσ(q + q̄ → · · ·)
dΩ

=
dσ(q + q̄ → gT + gT )

dΩ
+

dσ(q + q̄ → gL + gL)

dΩ
+

dσ(q + q̄ → gh + gh)

dΩ
.

(39)

Thanks to eq. (37), the negative cross-section for the annihilation into ghosts precisely cancels
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the positive cross-section for the annihilation into longitudinal gluons. Thus, the un-physical

processes cancel each other, and we are left with only the physical annihilation into the transverse

gluons,

dσ(q + q̄ → g + g or gh + gh)

dΩ
=

dσ(q + q̄ → gT + gT only)

dΩ
. (40)

Note: this relation is important for the unitarity of QCD.
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