PHY-396 K. Solutions for problem set #5.

Problem 1(a):
All the commutators in this question follow from the bosonic commutation relations (5.1) via

the Leibniz rule:

lahag al] = [al,alla; + allag.al] = 0 + alds, = dp,al, (5.1)
(ahag, a5) = [al,a5lay + allag a] = —0asiy + 0 = —dasiy, (S2)
lalag, alas) = [alag allas + allalag, a,a5] = dp aka; — dasalay, (S.3)
afa,,alala,a) = [afa,,allaba,as + allala,. al)a,a,
+alalblala,, a)as + alaba, afa,, ol
= Oyl abi, is + 0,508,000, 05 — nalaka,a; — Ousatakaa, . (SA4)

Problem 1(a):

First, let’s prove by induction that for integer n > 0, [a, (a7)"] = n x (a')"~!. The induction
base is easy to check: For n = 0 we have [a, (a7)°] = [a, 1] = 0 = 0 x whatever, while for n = 1
we have [a, (a1)"] = [a,a] = 1 = 1 x (a1)°. Now suppose [, (a1)"] = n(a’)"~! for some n; then

for n 4+ 1 we have

[a, (")) = [a,(@")" x a] = [a,(a")"] xa" + (a")" x [a,a] (S.5)
)
= n@)" txal + (@ x1 = (n+1)x (@)™
Similarly, for any integer n > 0, [al, (@)"] = —n(a)""!; again, the proof is by induction, which

is so similar to the above that I don’t need to spell it out.

Next, consider an analytic function f of the creation operator. Analytic functions can be
expanded into power series, f(z) = fo + fiz + fax? 4 - - -; substituting x + a! into such series

for f, we build the operator

f@)y E S @ = fo+ fixal + fox @+ (S.6)
n=0



Likewise, for f’(x) def df Jdx = 0 + f1 + 2fox + 3f32% + - - - we have

Fiat)y = nfax (@)t (8.7)
n=0
Consequently;,
=Y faxla, (@) =D faxnx @)t = fal). (S.8)
n=0 n=0

Similarly, for an analytic function of the annihilation operator, f(a) = fo+fixa+ fax (a)>+---,

we have
/(@) an L@ =3 fox (Cn)x @ = —F@. (89)
n=0
Q.£.D.
Problem 1(c):
In light of part (b), [a,exp(cal)] = exp’(cal) = cexp(cal) and [af, exp(ca)] = —exp/(ca) =

—cexp(ca). Consequently,
eAale e = (dTeC& — [dT,eC&De*C& = (dTeC& - (—c)ec‘i)e*d’ = al +¢ (S.10)

and likewise



Consequently, for any analytic function f (Y) = fo+ fiY + oY + -,

f<eXYe*X> = an <eXYe*X>n = an x eXyne=X

(S.13)
= X (Z fnY”> e X = X f(Y)e X
n
In particular, for X=ciand Y = at,
eCdf<&T)€_C& _ f(eC&&Te_Cd) — f(&T + C), (S.14>
and likewise, for X=cil and Y = a,
e“d' f(a)e=d" = f(ecé*ae—d“) = fla—-c). (S.15)

Q.ED.

Problem 1(d):
Since all the creation operators commute with each other, we may decompose any analytic

T

function of multiple creation operators into a power series with respect to any particular a,, as

f(multiple a) = ZFn(other d%) x (al )" (S5.16)

where F), are some analytic functions of the other creation operators d% ta The same F;, appear

in the partial derivative of f(a!) with respect to the al,,

Of (multiple af
dal,

) = Zn x F,(other d%) x (al )L (S.17)

Note that the creation operators &If with 8 # a commute with the a, annihilation operator,



hence any function of such dg to also commutes with the a,,

[da,lﬂm(other ag)} = 0, (S.18)

therefore

%ﬂmmmszmwm@%%@ﬂ
n

O f (multiple a') (S.19)

o4l

—ZF (other If x n(al)" "t =

This proves the first equation (4.4).

Similarly, any analytic function of multiple annihilation operators a 5 which also commute

with each other — may be decomposed into a power series in any particular a, as

f(multiple a) = ZFn(other ag) X (Gg)" (5.20)

where the F), are analytic functions of the remaining annihilation operators dﬂ ta but not of

T

the a, itself. Consequently, as operators all the F),(other dﬂ) commute with the a, and hence

al | f(multiple d)] = ZFn(other ag) X [dL, (da)n]
n

Of (multiple a) (5:21)

Oaq

= ZFn(other ag) X —n(a,)"t = —
n

This proves the second equation (4.4).

Now let’s proceed similarly to part (c¢). Applying the first two eqs. (4.4) to f(multiple z) =
exp (Zﬂ 05x5), we have

) . 9 ) )
[aa, exp (Zﬂ CﬂaEﬂ = +8? exp (Zﬂ cﬂaw = +4cq X €xp (Zﬁ 05(12) ,
(07

(S.22)




and consequently

exp (Zﬂ Cﬂdﬂ) X d‘; X exp (— Zﬁ Cﬁdﬁ> = dL + Ca,

exp (Zﬂ cﬂf%) X @, X exp (— ZB cﬁd2> = a, — Co-
Finally, applying eq. (S.13) to the these formulae, we obtain the last two eqs. (4.4) for any
analytic function f. Q.£.D.

(5.23)

Problem 2(a):

First, let’s verify eq. (5.7) for a state |v1,...,vn), with wave-function

@/)(Xl,...,XN) = T\l/ﬁ X QZ)(%(Xl)---gb,yN)(XN) (824)

where () surrounding the indices (77 - - - yn) denote total symmetrization, i.e. summing over all
N! permutations, 7" is the number of trivial permutations (of indices which happen to coincide),

and D is the number of distinct permutations (of indices which do not coincide). For this state,

aa‘717'--77N> = Vna+1|717---77N704>7 <825)
which has wave-function
p Ng + 1
?/} (Xl, e ,XN,XN+1) = T\/ﬁ X gb(’yl(xl) cee ¢7N(XN)¢04)(XN+1)' (826)

Here total symmetrization on the RHS means summing over all the (N + 1)! permutations of
indices (71 - - - ynya). Let’s group these permutations in N +1 blocks of N!, namely first permute

the 4’s among themselves, and then put o anywhere in that list,

N+1

¢(71 (Xl) e ¢7N(XN)¢ XN+1 Z ¢o¢ XZ X ¢ M Qb XN+1). (827)

But the symmetrization over 7’s here is exactly as in eq. (S.24), except for the relevant coordi-

nates being (x1,..., Xi,...,Xny+1) instead of (x1,...,xx). Therefore,

/7 N+1
VX1, XN, XNE) = T’\/ﬁ x TV D x Z Ga(xi) X V(X1,. .y Xy oo XN1), (S.28)

exactly as in eq. (5.7), except maybe the overall coefficient. To check this coefficient, we use



egs. (5.6). Given occupation numbers ng of the original state |yq,...,7n), the new state

|71 - -+, YN, @) has n’ﬁ = ng + a3, hence

T’ Ne + 1)!
7= It/ Thost = #2028 = o
; Ne!

B
A e N e e M

Ng + 1 1
— xTVvD = .
T/ D' VN +1

Thus, the coefficient in eq. (S.28) is also exactly as in eq. (5.7).

At this point, we have proved eq. (5.7) for states |N, W) that happen to be |v1,...,yn) for
some 71, ...,yn. To prove it for all N-boson states |N, ) we now use linearity: the operator
dL is linear, and eq. (5.7) is manifestly linear with respect to ¢ and v/, so if it holds for any
set of states, it also holds for all their linear combinations. But states |v1,...,vy) make up
a complete basis of the N-boson Hilbert space, so any |N,%) is a linear combination of such

states. Therefore, eq. (5.7) must hold for any N-boson wave function ¢(x1,...,xy). Q.E.D.

Problem 2(b):

The operator a, is the hermitian conjugate of the operator d&, so for any two states |V, ¢) and

<N - ]-7?Z|7

<N_1777’5| doe|N777Z)> = <N,’I7Z)|(AIL|N— 17{2;>* (830)

In wave-function terms, this means

/d3X1 s -/dng_l @Z*(Xl, Ce 7XN—1) X ’(/)”(Xl, e aXN—l) = (831)
= /d3X1 .. -/dng ’(Z)(Xl, - ,XN) X [@’E/(Xl, - ,XN)}*

where @Z’(xl, ..., Xy) is the wave function of the state ’N, QZ’> = ay |N — 1,{/;). Applying



eq. (5.7) of part (a) to this wave-function, we obtain

/d3X1 . ~/d3XN_1 QZ*<X1, e 7XN—1> X 1/}”<X1, . ,XN—l) =

N
1 /3 /3 * *
= T = Z d X1 o d XN’l/}<X17"'7XN> X(ba(Xi) X’l/} (Xlu"'7Xi7"'7XN)
\/N i=1
{( by permutational symmetry ))

= %/dgm "'/dSXN (X1, .., XN) X Oh(XN) X J*(xl, Co o XN-1)
= /d3X1 .../d3xN1 {/;*(xp o XN—1) X VN d?’XN(bZ(XN) X (X1, ., XN_1,XN)-

(S.32)

This formula holds true for any totally symmetric wave-function {Z;(Xl, ...,XN_1), and this is
possible only when

’w”(Xl, e 7XN—1) = \/N dnggbZ(XN) X ’(Z)(Xl, o, XN, XN), (58)

or rather when the totally symmetric part of the left hand side here equals to the totally
symmetric part of the right hand side. But for bosonic wave functions ¢ and zz both sides must

be already totally symmetric in (x1,...,Xy_1) as they are, so eq. (5.8) must apply exactly as
written. Q.£.D.

Problem 2(c):
Let Ans = (a| A1 |B). Since states |) make a complete basis of the 1-particle Hilbert space,
for any 1-particle states (¢ and [¢))

(W] Ar|e) =" Aag (Bla) (BlY) =Y Agp x /d?’fczﬁ*(fc)asa(fc) X /d3x<z>;<x>w<x>. (S.33)
a,B a,p

This is undergraduate-level QM.

In the N—particle Hilbert space we have a similar formula for the matrix elements of the Ay

acting on particle #i, the only modification being integrals over the coordinates of the other



particles,

(N, 9] A1 (i) [N, p) =

/ /d3X1 >§< XN ZAO‘ﬁ X </d3§<i{/;*(x1,...,ii,...,xN)¢a(>~<i))
X (/d?’xi Q%(xi)lp(xl,...,xi,...,xN))
= ZAQB X / /d X1 - XN dSXZ @Z*(Xl,...,ii,...,XN) X gba(f(i)

X (b;(xl) X w(xl, ey Xy 7XN)-
(S.34)

For symmetric wave-functions of identical bosons, we get the same matrix element regardless

of which particle #¢ we are acting on with the operator 1211, hence for the net A operator (5.9),

(N, 9| AL N ) = N x ZAM X / /d x| - dPxn_1 PxydPRy (S.35)
’l/} (Xlu"'7XN717)~(N) X (ba(iN)
X ¢3(XN) X P(X1, .-, XN-1,XN)-

Now consider matrix elements of the Fock-space operator (5.10). According to eq. (5.8) of

part (b), the state [N —1,¢") = az|N, ) has wave-function

w”<X1,...,XN,1) = \/N d3XN ¢E(XN> X 1/}<X1,...,XN,1,XN). <S36)

Likewise, according to eq. (5.7) of part (a), the state }N -1, ’(Z”> = G |V, ¥) has wave-function

V'(x1,.. . xn_1) = VN [dP%y 65&N) X O(X1, ..., XN_1, %N ). (S.37)



Consequently;,

(N, ¥|akag N, ) = (N =1,4"[|N=1,4")
= / : -/d3X1 Xy (X, xv1) X (X, XNo)
- / : -/d3x1 o xno1 VN [ BRN da(Zn) X 05 (X1, ..., XN_1,XN) X

x VN [d*xy ¢E(XN) X (X1, .., XN-1,XN).

(S.38)
Comparing this formula to the integrals in eq. (S.35), we see that
-~ . ~ (2
(NG AN = 37 Aas x (N0 alagIN.0) = (NOJAZ N (339)
a,p
Q.ED.
Problem 2(d):
This part follows from the second commutator in problem 1(a). Indeed, Given
7 (2 i At A
AZ =" (alAv|p) dla, (S.40)
a7ﬁ
and
B — Bi|6) ala S.41
tot </7‘ 1| > a7a57 ( : )
~,8

we immediately have



[A2.B2)] = 3 (ol dlB) (1] Bu1o) (Al ala,)
O{7/B7’)/76
{(using (S.3) )

= 3" (alAi18) (1 Bi18) (9pahas — dasibiy)

a7/67775
=S ahay x S (ol A (1 Bils) =S aba, x 3 (91 Bila) (ol A |8)
Oé75 ﬂ:ry ﬂf)/ a=d

=Y dlag (ol AiBi|6) = alag (7] BiA|8)
a,0 By

((renaming summation indices ))
=" ahag x (ol B |8) — (ol BiAy|))
a?ﬂ
= dfadﬂ X <a| <[A1,B1] = él> |ﬁ> = éégg

a?ﬂ
(S.42)

Problem 2(e):

This works similarly to part (c), except for more integrals ©. Let

Bagns = ((a] @ (8])B2(y) ®10)) (S.43)

be matrix elements of a two-body operator By between un-symmetrized two-particle states.

Then for generic two-particle states (1| and [¢)) — symmetric or not — we have

(W Bal) = Y Bapas x (0] (la) @18)) x ((v] @ (3]) [v)

a7/67775

= Y Bapo X//d3>~<1 A% U (X1, X2) b (X1) b5 (X2) (S.44)

a7/67775

X //d3X1 d3X2 gbi‘;(Xl)gbg(Xg)ﬂ)(Xl, XQ).

Similarly, in the Hilbert space of N > 2 particles — identical bosons or not — the operator By

10



acting on particles #¢ and #7 has matrix elements

(N, | Bo(at, 7Y [N, y) =

= Z Baﬂﬁax/"'/d3X1"'>§<i"'%"'d3XN

a,B,7,6

//dgfcl d3}~(j @Z*(Xl, c. ,}~(i, c. ,}~(j, c. ,XN)gba(f(i)gbﬁ(f(j)

X //d3xi dng G5 (%) P5 (X)W (X1, -+ oy Xiy oo, Xy oo, XN)
(S.45)
For identical bosons — and hence totally symmetric wave-functions v and {/; — such matrix
elements do not depend on the choice of particles on which By acts, so we may just as well let

t=N —1and 7 = N. Consequently, the net B operator (5.11) has matrix elements

3 By = T 2D (v G v - 1) v,y
N(N -1
= % > Bapns X Iagns (S.46)

a?ﬂ?’y76
where

Tag s :/"'/d3xl"'d3XN2 //dgiN1d3>~CN{/;*<X17---7XN275(N175(N)¢a<5(N1)¢6<5(N)

X //d3XN—1 d*xy @5 (XN 1) 95 (XN )(X1, - XN 2, XN -1, XN)

Now let’s compare this to the Fock space formalism. Applying eq. (5.8) of part (b) twice,
we find that the (N — 2)—particle state

[N —2,9") = aga, [N, ) (S.47)

has wave function

@/)///(Xl, R ,XN_Q) = \/N(N — 1) //dng—l dSXN Qbiky(XN—l)gbg(XN)

X ?/’(Xla B 7XN—27XN—17XN)'

(5.48)

11



Likewise, applying eq. (5.7) of part (a) twice, we find that the (N — 2)—particle state
[N —2,9") = agd, |N,v) (S.49)

has wave function

V(X1 X)) = \/N(N—l)//d?’xN1d3xN¢E(>~cN1)¢Z(ScN)

X (X1, XN_2, XN 1, XN)-

(S.50)

Taking Dirac product of these two states, we obtain

(N, 9| af, &Tdéd IN, ) = (N =2, IZH/HN—2,1/J”’>

/ /d3X1 PPxn o 0" (X1, XN_2) X " (X1, Xya)

— 1) X Iaﬁ o) (S )
5l

where 1,35 is exactly the same mega-integral as in eq. (S.46). Therefore,

(N, O BG ING) = 53 Bapas x (N.d|alabasay [N, w) = (N, §| Bo) [N,¢)  (352)
a,B,7,0

where the second equality follows from eq. (5.12). Q.£.D.

Problem 2(f):
In the Fock space,

A 2 A " "
AL = 3" (ul Avv) dla, (5.10)
nnu
and
A 2 ~ R . . .
Bt(og =3 Z (a® B| B2 |y ® ) agagayad, (5.12)
a?ﬂ?’y75

where (o ® f| is a short-hand for the un-symmetrized two-particle wave function ({(a] ® (3|)

12



and likewise |y ® d) = (|y) ® |0)). Therefore,

~(2) (2 - S At A At At A A
ASLBE = 1 3" (ulAiv) (a® Bl Baly6) [}, alaba,a,)
M7V7Oé7/87’)/76
((using eq. (S.4)))

=3 ) dld%&vd(sXZ(MAH ) (v ® B| By |y ® )

1,8,7,0
+ 4 ) alalaa xz (u| A1 [v) (a @ v| By |y @ 6)
1)

1 a7lL‘L7’y7 -|- -I- A (S.53>
— 1Y alaba,a; x> (0@ B Ba|u@d) (ul A |v)

a7ﬁ7V75 I’L
— 3 > alaba,a, x Y (a®B|Baly ® p) (u] Ar|v)

a,Byy,v H

( renaming summation indices )

- 2 Z Qe 5 'ya(S X Caﬁ,%fﬁ
a,B,7,6

where

Coprs = (] AN MA@ B Baly@d) + > (BlAL|N) (a® A By |y )
A A

- Z (@®B|Ba[A@3) (N Aily) — ) (a@p|Bly®A) (A Ar]9)
A

= (@8 (AMB + 4By — Bdi(1Y) — Bdy(2)) |y @ 0)
— (a®f [( (15%) + Ay ( znd>),f)>2} @) = (a®p|Caly®d).
(S.54)
Consequently, [/Alggz, Bt(gt)] = ét(c?t) Q.ED.

Problem 3(a):
To simplify the exp(¢al — £*a) in the definition of a coherent state |€), we use the product-of-

exponentials formula

VA, B: Al = exp(A+ B+ YA, B + L[(A-B),[A B)] + ) (S.55)

N

In particular, for A= al, B = —&*a and [121, B] = &£ being a c-number, all the multiple

13



commutators vanish and
file=€a exp <§€LT —&a+ %fé*) ., exactly. (S.56)
Consequently
€y deF paT=ga gy = oleP/2e8T 8 gy = omlEP/2e8aT gy (S.57)

where the last equality follows from a |0) = 0 and hence exp(—¢&*a) [0) = |0).

Next, we saw in problem 1(c) that a — & = eSa’ ge—ta, Consequently,
(@—€)1€) = 8@ ae st x oI6F/2e80 |0y = IEF/2e80" 410y = 0 (8.58)

where the last equality follows from a |0) = 0, and hence a |£) = £ |€).

BTW, the coherent states are often defined by the condition a |£) = £ |€). We may formally
prove the existence of such a coherent state for any complex number ¢ by noting that the
operators @' = a — & and @'t = al — £* satisfy the same commutation relation [@/,a'T] = 1 as
the @ and a' operators. Consequently, the same formal argument that proves the existence
of the ground state |0) annihilated by the a operator also prove the existence of the state |¢)
annihilated by the @’ = a—¢&. Alas, the formal proof of existence does not tell us what that state

looks like, so the explicit construction used in this problem provides the missing description.

Problem 3(b):

In the coordinate basis, the annihilation operator a acts as

wmd + ip  wmi + ho,

v 2hwm B vV 2hwm

(S.59)

and the condition a |§) = £ |£) becomes a first-order differential equation

(h% + wm xx — V2hwm X f) Ye(z) = 0 (5.60)

for the wave-function 1)¢(x) of the coherent state. This equation has a unique solution (up to

14



an overall normalization), namely

2
Ye(r) = const x exp [ £ T wr — T g2 ) (S.61)
h 2h
or equivalently,
Ye(x) = const x e/t gmmw(a—2)*/2h (5.62)

a Gaussian wave-packet with

2h
T = {/— xRef and p = V2hwm xImé&. (S.63)
wm

Note that the width of the wave packet (S.62) does not depend on &, so all coherent states have
the same Az. In particular, since | = 0) is the oscillator’s ground state, all coherent states

have the same width as the ground state.

Problem 3(c):
For any normal-ordered product of creation and annihilation operators — i.e., a product in

which all creation operators are to the right of all annihilation operators — one has
€l @*@’ley = (€%, (8.64)

simply because @ [€) = £[¢€) = (a)" [¢) = €'[€) and (¢]al = €* (€] = (¢](aN)" = (€9)* (¢].
In particular, (¢| (7 = afa) |€) = €*¢. On the other hand,

hence An = /(n2) —n? = /n.

15



In a similar manner,

T = gzw(dMT% i = %((@)2+(&T)2+2dm+1), (S.66)
hence
h h
(€18716) = 5 —(E+E)+1) = (€l21e)° + 5 —. (S.67)
Likewise,
h h
€716 = (i) 1) = (@ple? + T

Altogether, this gives us for any coherent state

[ h [mwh h

Q.ED.

Problem 3(d):

In a classical harmonic oscillator, the position z(t) and the momentum p(t) oscillate as

(1) #(0) x cos(wt) + % x sin(wt), .
p(t) p(0) x cos(wt) — mwz(0) x sin(wt).
Consequently,
&0 = mwi(t;h:f(t) = mw%ﬁ@ x cos(wt) + _im%ﬁ O sinwr)
= mw%p((]) X e W = £(0) x eI,
(S.70)

Now consider the quantum state |¢(t)) for the classically oscillating £(t) = & x e~ ™. In
light of eq. (5.13),

€(t)) = eleF/2 037 gy (S.71)

and only the second factor here depends on time. Indeed, |£(£)|? = [£|?> = const = e IEF/2 =

const, while |0) is time-independent because we work in the Schrodinger picture. In this picture,

16



the a' operator is also time independent, hence

d eqt d§ ot . ot
B L A AR
7 € 4 xe iwEal x es (5.72)

and therefore

Sl = —wgatle) = —wala e (3.73)
where the second equality follows from ¢ [£) = @ |£). Consequently,
S IE0) = hala ) = HEw) (574)
— the time-dependent coherent state |£(¢)) obeys the Schrodinger equation.  Q.€.D.
Problem 3(e):

In problem 1(c) we saw that egdff(d) = f(a— S)ef&T for any function f(a) of the annihilation

operator, and in particular

exp(§al) xexp(n‘a) = exp(n*(a—¢)) x exp(§a’) = exp(—n"¢) x exp(n’a) x exp(&a’). (S.75)
Consequently, the quantum overlap of the coherent states |£) and (n| is

(nle) = eI /2e= 612 (0] exp(*a) exp(&at) |0)
= e P2 I6F /2 407¢ (0| exp(£a’) exp(n*a) |0) (5.76)

= exp (—glnf* — 3l¢* + 7€) x 1

because € @ |0) = |0), (0] el = (0], and (0]|0) = 1. In terms of the probability overlap,

(&) = exp(—In—¢%). (S.77)

17



Problem 3(f):
Generalization of coherent states to multi-oscillatory systems and further to the creation /

annihilation fields is completely straightforward:
|coherent) aof exp(ﬁ’Jr — F) |0y = e /2 ! |0) (S5.78)

where

Ff=cal = ) &al, = [dPxox)¥(x). (S.79)
«
Similar to the single-oscillator theory, (‘il(x) — @(x))eﬁ e T\i”L(x), hence
U(x) @) = O(x)|D). (S.80)

Problem 3(g):

Using eq. (S.80) and its hermitian conjugate, we have

(@) - B () B(y1) - Dy [8) = @*(x1) - (x)@(y1) - B(ye)  (S8L)

for any normal-ordered product of the quantum fields. Specifically, for the particle-number

operator N we have eq. (5.16), while for its square — whose normal-ordered form

N? = //d3xd3y\iﬁ(x)\iﬁ(y)@(x)@(y) + /d3x\iﬁ(x)\if(x) (S.82)

generalizes eq. (S.65) — we have

@180 = [[Exdly o 0o ()0I0) + [Exd(Be) = (@] N @) + (0] N]),
(5.83)
and hence AN =VN. Q.E.D.
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Problem 3(h):

First of all, if ®(x,t) satisfies the classical field equation (5.18) — which looks exactly like a
one-particle Schrédinger equation — then N remains constant. (This is undergraduate-level
QM.) Also, in the Schrédinger picture of the QFT,

d pt dFt P 5 0®(x,t) -t Pt
€ = ¢ = {/dx B Ul(x)| e (S.84)

thanks to mutual commutativity of the creation fields. Consequently, exactly as in part (e),

m% (|<1>>:e—N/QeFT |o>) — [/dSXih%@T(x)} |®)

{(using eq. (5.18) )

_ e )
= /d3x ((sz + V(x)) @(x)) Ul (x)| |®)
L (S.85)
{(using eq. (5.15) )
- _/d3x U(x) _—7_’2v2 +V(x) | U(x)||®)
2M
= H|)
Q.ED.
Problem 3(i):
Generalizing (e) to multi-oscillatory systems is completely straightforward:
&) = TTe ™" = exp (=Y lea = mal?)
or for the field theory,
(D1|Da)|* = exp (/d3x 1By (x) — @z(x)F) : (S.86)

which is exponentially small for any macroscopic §®(x) = ®1(z) —Po(z). Indeed, a macroscopic
difference between two coherent states means (by definition) that §® affects a large number of

particles, [ |§®]? > 1, which makes for an exponentially tiny overlap (S.86).
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