
PHY–396 L. Solutions for homework set #15.

Problem 2(a):

At the tree level, the scalar decay amplitude is simply

iM(S → f + f̄) =

S

f f̄

= ūf (−ig)vf̄ . (S.1)

Summing over spins of the outgoing fermions, we get

∑

|M|2 = g2× tr
[

(6p1 +mf )(6p2 −mf )
]

= g2× (4p1p2−4m2
f ) = 2g2× (M2

s −4m2
f ), (S.2)

where the last equality follows from 2p1p2 − 2m2
f = (p1 + p2)

2 − p21 − p22 − 2m2
f = M2

s − 4m2
f .

The phase space factor for one particle decaying into two — in the frame of the initial

particle where the momenta of the final particles are ±p — is

dP =
1

(2Ms)(2E1)(2E2)
× d3p

(2π)3
× (2π)δ(E1 + E2 −Ms)

=
p2 dΩp

32π2MsE1E2
×
(

d(E1 + E2)

d|p| =
|p|Ms

E1E2

)

,

⇐
=

Pnet =
|p|

8πM2
s
.

(S.3)

Consequently, the net tree-level decay rate is

Γ(S → f + f̄) = P ×
∑

|M|2 =
g2

4π
×

M2
s − 4m2

f

M2
s

× |p|. (S.4)

By energy conservation,

|p| =
√

(12Ms)2 −m2
f =

βMs

2
where β =

√

1−
4m2

f

M2
s
, (S.5)
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so in terms of the fermions’ speed β,

Γtree(S → f + f̄) =
g2

8π
× β3Ms . (S.6)

Note that for weak Yukawa coupling g2

16π ≪ 1, the decay rate is small compared to the scalar’s

mass, Γ ≪ Ms, so the resonance due to the unstable scalar should be narrow.

Problem 2(b):

For real p2, everything under the integral in eq. (1) is real — except for the logarithm when

∆(ξ) happens to be negative, in which case log = real ± πi. To determine the sign, we let

p2 = real + iǫ, hence

∆ = m2
f − ξ(1− ξ)× p2 = real − iǫ (S.7)

and therefore

Im log
4πm2

∆
= − Im log(∆− iǫ) = +π ×Θ(∆ < 0). (S.8)

Consequently, the imaginary part of Σφ is given by

ImΣ1 loop
φ (p2 + iǫ) =

12g2

16π
×

1
∫

0

dξ (m2
f − ξ(1− ξ)p2)×Θ(m2

f − ξ(1− ξ)p2 < 0). (S.9)

Technically, the mf here is the bare fermion mass, but at the O(g2) level of accuracy we may

neglect the difference between mbare
f and mphys

f . Consequently, the threshold for the imaginary

part (S.8) lies at p2min = (2mphys
f )2 — which is precisely the lowest scalar mass (Mphys

s )2 that

allows for decay S → f + f̄ .

Letting p2 = M2
s > 4m2

f , we have

m2
f

p2
=

1− β2

4
=⇒ ∆(ξ) =

M2
s

4
×
(

1 − β2 − 4ξ(1−ξ)
)

=
M2

s

4
×
(

(1−2x)2 − β2
)

(S.10)

— which becomes negative for 1−β
2 < x < 1+β

2 . Consequently, the integral in eq. (S.9) evaluates

2



to

M2
s

4
×

1
2 (1+β)
∫

1
2(1−β)

dξ
[

(1−2ξ)2 − β2
]

= −M2
s

8
×

+β
∫

−β

d(1−2ξ)
[

β2− (1−2ξ)2
]

= −M2
s

8
× 4β3

3
(S.11)

and therefore

ImΣ1 loop
φ (M2

s + iǫ) = − g2

8π
× β3M2

s . (S.12)

Problem 1(c):

By inspection of eqs. (S.6) and (S.12), eq. (3) holds true:

ImΣ1 loop
φ (p2 = M2

s + iǫ) = − g2

8π
× β3M2

s = −Ms × Γtree(S → f + f̄). (1)

Higher-loop imaginary parts are similarly related to the decay rates calculated to higher orders.

In the bare perturbation theory (using the bare λb and M2
b parameters and Z factors instead

of the counterterms),

ImΣbare pert. theory
φ (p2 = (Mphys

s )2 + iǫ) = −Mphys
s × Γtotal(S → anything)× Zφ; (S.13)

in the perturbation theory using counterterms, the Σφ(p
2) amplitude has a different normal-

ization by a 1/Zφ factor, so we have simply

ImΣcountertermpert. theory
φ (p2 = (Mphys

s )2 + iǫ) = −Mphys
s × Γtotal(S → anything). (S.14)

Eqs. (S.13) and (S.14) work in all quantum field theories. For any field φ̂(x) which can create

an unstable particle U of physical mass MU and lifetime 1/ΓU ≫ 1/MU , the imaginary part of

Σφ for that field satisfies

ImΣbare pert. theory
φ (p2 = (Mphys

U )2 + iǫ) = −Mphys
U × Γtotal(U → anything)× Zφ ,

ImΣcountertermpert. theory
φ (p2 = (Mphys

U )2 + iǫ) = −Mphys
U × Γtotal(U → anything).

(S.15)

The relation (S.15) follows from the optical theorem, which makes a narrow resonance out

of any slowly-decaying particle. Consequently, the propagator of the field creating such particles
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should have form

Fφφ(p
2 + iǫ) =

iZ

p2 − (Mphys
U )2 + iMphys

U × Γtot(U → anything)
+ finite (S.16)

for p2 near (Mphys
U )2. The perturbation theory gives this propagator as

Fφφ(p
2) =

i

p2 − m2
bare − Σφ(p2)

, (S.17)

so to make a Breit–Wigner resonance (S.16) out of this formula, we need

(Mphys
U )2 − (mbare

φ )2 = ReΣφ(p
2 = (Mphys

U )2 + iǫ), (S.18)

1

Zφ
= 1 − Re

dΣφ

dp2

∣

∣

∣

∣

p2=(Mphys

U
)2+iǫ

, (S.19)

ImΣφ(p
2 = (Mphys

U )2 + iǫ) < 0 (this is essential!), (S.20)

Mphys
U × Γtot(U → anything)× Zφ = − ImΣφ(p

2 = (Mphys
U )2 + iǫ). (S.21)

In addition, we also assume that Γtot(U) ≪ Mphys
U and that the imaginary part ImΣφ(p

2 + iǫ)

does not change much for p2 = (Mphys
U )2 ± O(Mphys

U × Γtot(U)). If these assumptions fail, the

resonance looks wide and/or deformed rather than a nice Breit–Wigner peak (S.16).

Problem 3(a):

Feynman rules for the diagram (4) evaluate to

−iΣ(p2) =
(−iλ)2

3!

∫

d4q1
(2π)4

∫

d4q2
(2π)4

i

q21 −m2
i ǫ

× i

q22 −m2
i ǫ

× i

q3 = p− q1 − q2)2 −m2
i ǫ

(S.22)

where the overall 1/3! factor comes from the permutation symmetry between the 3 propagators.

Using Feynman’s parameter tricks — specifically, eq. (F.d) from the homework set 13 — we
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may combine the denominators of the three propagators into a complete cube,

3
∏

i=1

1

q2i −m2 + iǫ
=

∫

△

d(FP )
2

D3

def
=

∫∫∫

ξ,η,ζ≥0

dξ dη dζ δ(ξ + η + ζ − 1)× 2

D3
(13.F.d)

where

D(ξ, η, ζ) = ξ × q21 + η × q22 + ζ × (q3 = p− q1 − q2)
2 − m2 + iǫ. (S.23)

Consequently, we may rewrite eq. (S.22) as

Σ(p2) = −λ2

3

∫

△

d(FP )

∫

d4q1
(2π)4

∫

d4q2
(2π)4

1

D3
. (S.24)

Our next step is to shift the independent momentum variables from q1 and q2 to some k1

and k2 so that D takes sum-of-squares form (6). So let us expand the ζ(q3 = p− q1− q2)
2 term

in eq. (S.23) and then collect all the terms containing the q1 momentum into a full square,

D + m2 = ξ × q21 + η × q22 + ζ × (p− q1 − q2)
2

= (ξ + ζ)× q21 + 2ζ × qµ1 (q2 − p)µ + ζ × (q2 − p)2 + η × q22

= (ξ + ζ)×
(

q1 +
ζ

ξ + ζ
(q2 − p)

)2

+
ξζ

ξ + ζ
× (q2 − p)2 + η × q22 .

(S.25)

Naturally, we interpret the first term on the last line as α× k21, thus

α = (ξ + ζ), k1 = q1 +
ζ

ξ + ζ
× (q2 − p). (S.26)

For the other two terms on the last line of (S.25), we expand (q2 − p)2 and collect all terms
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containing the q2 momentum into another full square, thus

ξζ

ξ + ζ
× (q2 − p)2 + η× q22 =

ξζ + η(ξ + ζ)

ξ + ζ
×
(

q2 − ξζ

ξζ + η(ξ + ζ)
p

)2

+
ξζη

ξζ + η(ξ + ζ)
p2.

(S.27)

Consequently, we define

β =
ξη + ξζ + ηζ

ξ + ζ
, γ =

ξηζ

ξη + ξζ + ηζ
, k2 = q2 − ξζ

ξη + ξζ + ηζ
× p, (S.28)

which makes the right hand side of eq. (S.27) into β × k22 + γ × p2. Altogether, we arrive at

ξ × q21 + η × q22 + ζ × q23 = α× k21 + β × k22 + γ × p2 (S.29)

and hence eq. (6).

Note: the Feynman-parameter-dependent coefficients α, β, and γ in eqs. (S.26) and (S.28)

are precisely as in eq. (7).

Finally, we need to check the Jacobian of replacing the original independent loop momenta

q1 and q2 with k1 and k2. In light of eqs. (S.26) and (S.28), it is easy to see that

∂(k1, k2)

∂(q1, q2)
= det

(

1 ζ
ξ+ζ

0 1

)

= 1, (S.30)

and therefore dk1 dk2 = dq1 dq2, dimension by dimension. In other words, for fixed Feynman

parameters
∫

d4q1
(2π)4

∫

d4q2
(2π)4

=

∫

d4k1
(2π)4

∫

d4k2
(2π)4

, (S.31)

and therefore

Σ2 loop(p2) = −λ2

3

∫

△

d(FP )

∫∫

d4k1 d
4k2

(2π)8
1

[D = αk21 + βk22 + γp2 −m2 + iǫ]3
. (S.32)
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Problem 3(b):

The momentum integral in eq. (S.32) has form

∫

d8k

[k2 + · · ·]3 , (S.33)

which is quadratically divergent for k → ∞. However, the quadratic divergence here is a p–

independent constant, so it does not affect the derivative dΣ/dp2 and hence the field strength

renormalization factor Z. Instead, the derivative is only logarithmically divergent.

To see how this works, let’s take d/dp2 derivatives of both sides of eq. (S.32). On the right

hand side, the only p-dependent thing is the γp2 term in D, hence

∂D
∂p2

= γ =⇒ ∂

∂p2
1

D3
=

−3γ

D4
(S.34)

and therefore

dΣ

dp2
= +λ2

∫

△

d(FP ) γ ×
∫∫

d4k1 d
4k2

(2π)8
1

D4
(S.35)

cf. eq. (7). Here, the momentum integral has form

∫

d8k

[k2 + · · ·]4 , (S.36)

so its UV divergence for k → ∞ is logarithmic rather than quadratic.

Problem 3(c–d):

Rotating both loop momenta k1 and k2 into the Euclidean momentum space, we have d4k1 →
id4kE1 , d

4k2 → id4kE2 , and

D → −α× (kE1 )
2 − β × (kE2 )

2 + γ × p2 − m2 (S.37)

hence

dΣ

dp2
= −λ2

∫

△

d(FP ) γ ×
∫

d4kE1
(2π)4

∫

d4kE2
(2π)4

1

[α(kE1 )
2 + β(kE2 )

2 + m2 − γp2]4
. (S.38)

Next, we need dimensional regularization to actually perform the momentum integrals.
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Changing

∫

d4k1
(2π)4

∫

d4k2
(2π)4

→ µ2(4−D)

∫

dDk1
(2π)D

∫

dDk2
(2π)D

(S.39)

(Euclidean signature for all dimensions), we have

µ8−2D

∫

dDk1
(2π)D

∫

dDk2
(2π)D

1

[α(kE1 )
2 + β(kE2 )

2 + m2 − γp2]4
=

〈〈using eq. (9)〉〉

=
µ8−2D

6

∫

dDk1
(2π)D

∫

dDk2
(2π)D

∞
∫

0

dt t3 exp
(

−t×
[

α(kE1 )
2 + β(kE2 )

2 + m2 − γp2
]

)

=
µ8−2D

6

∞
∫

0

dt t3e−t(m2−γp2)

∫

dDk1
(2π)D

∫

dDk2
(2π)D

e−tαk2
1e−tβk2

2

〈〈using eq. (10)〉〉

=
µ8−2D

6

∞
∫

0

dt t3e−t(m2−γp2) × (4παt)−D/2(4πβt)−D/2

=
µ8−2D

6(4π)D(αβ)D/2
×

∞
∫

0

dt t3−De−t(m2−γp2)

=
µ8−2D

6(4π)D(αβ)D/2
× Γ(4−D)(m2 − γp2)D−4.

(S.40)

Note the Γ(4 −D) factor: It has a pole at D = 4 but no poles at D < 4. This is dimensional

regularization’s way to show that the momentum integrals diverge, but only logarithmically.

At this point, we may take D = 4− 2ǫ for an infinitesimally small ǫ. Hence, the last line of

eq. (S.40) becomes

1

6(4π)4(αβ)2
× Γ(2ǫ)×

(

4πµ2
√
αβ

m2 − γp2

)2ǫ

−−→
ǫ→0

1

6(4π)4(αβ)2
×
(

1

2ǫ
− γE + log

4πµ2
√
αβ

m2 − γp2

)

.

(S.41)
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Plugging this formula back into eq. (S.38) and assembling all the factors, we finally arrive at

dΣ

dp2
= − λ2

12(4π)4

∫

△

d(FP )
γ

(αβ)2
×
{

1

ǫ
− 2γE + 2 log

4πµ2

m2
+ log

αβ

[1− (p2/m2)γ]2

}

(S.42)

where α, β, and γ depend on the Feynman parameters ξ, η, ζ according to eq. (7). Plugging

in their explicit form — and also the explicit form of the Feynman parameter integral — we

immediately obtain eq. (12). Q.E .D.

Problem 3(e):

When a divergent diagram is regularized using DR (dimensional regularization), the 1/ǫ poles

could come from several places. Most commonly, they appear as Γ(ǫ) or Γ(2ǫ) factors from

integrals over t–like parameters introduced to make the momentum integral Gaussian, for ex-

ample see the last couple of lines of eq. (S.40). But for some diagrams — especially with nested

or overlapping divergences, see §10.5 of the textbook for an example — there are additional

singularities for ǫ → 0 coming from divergent integrals over the Feynman parameters.

Fortunately, this does not happen for the two-loop amplitude in question, and that’s what

we need to verify in this part of the problem.

We have 3 Feynman parameters ξ, η, ζ satisfying ξ+η+ ζ = 1 and ξ, ηζ ≥ 0; together, they

span a 2D area (since only 2 are independent) in the shape of an equilateral triangle

η

ζ

ξ (S.43)
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We are to verify that the functions

F (ξ, η, ζ) =
ξηζ

[ξη + ξζ + ηζ ]3
(S.44)

and

H(ξ, η, ζ) = F (ξ, η, ζ)× logG(ξ, η, ζ)

for G =
[ξη + ξζ + ηζ ]3

[ξη + ξζ + ηζ − ξηζ(p2/m2)]2
(S.45)

maybe safely integrated over that area, so let’s start with the F (ξ, η, ζ) and check it for singu-

larities. The denominator [ξη + ξζ + ηζ ]3 stays positive in the interior of the triangle (green

area in fig. (S.43) where all three of ξ, η, ζ are positive) and also along the edges (blue lines

where precisely one of the ξ, η, ζ becomes zero), but it vanishes in the vertices (red dots where

two variables go to zero at the same time). So as far as the first integral (13) is concerned, the

only potentially dangerous parts of the triangle are the vertices, all other places are completely

safe.

Let’s take a closer look at any one vertex (they are related by symmetry), say ξ, η → 0

while ζ ≈ 1. Near this vertex

F ≈ ξη

(ξ + η)3
, (S.46)

and if we approach this vertex along a line η = ξ × a constant, then

F ∝ 1

ξ
→ ∞ as ξ → 0. (S.47)

This behavior would create a divergence in one-dimensional integral
∫

dξ, but not for the 2D

integral we are interested in. Indeed, let’s change our coordinates according to eq. (17) and

consider what happens for w → 0. In this limit — which corresponds to the corner ξ, ζ → 0 —

we have

F ≈ x(1− x)

w
(S.48)

but the differential

F dξ dη = F × w dw dx ≈ x(1 − x) dx× dw (S.49)

remains perfectly finite for w → 0, so the integral converges just fine.
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Now consider the other integral (13) where we have an extra logG(ξ, η, ζ) factor in the

integrand. Since G is a rational function, logG does not have any singularities worse that

logarithmic, and log singularities may be safely integrated over. The only potential danger

comes from singularities of the logG coinciding with singularities of the F factor, so the net

singularity becomes worse.

Since F ’s singularities lie at the 3 corner of the triangle, let’s see how the G function and

its log behave hear the corners. Going back to the ξ, η → 0, ζ ≈ 1 corner, we have

G ≈ (ξ + η)3

[ξ + η − ξη(p2/m2)]2
≈ (ξ + η) (S.50)

so logG has a logarithmic singularity on top of the “pole” of F . However, in terms of the w, x

coordinates, the differential

F × logG× dξ dη ≈ x(1 − x) dx× log(w) dw (S.51)

has only a mild logarithmic singularity at w → 0 and the integral converges.

Optional problem 3(⋆): my Mathematics code; my numeric code.

Problem 3(f):

Having verified that the integral (12) over the Feynman parameters converges, we now face

the daunting task of actually evaluating the integral. Fortunately, we do not need to evaluate

its as an analytic function of the external momentum p2 — for the purpose of calculating

the field strength renormalization factor Z we are interested in only one value of p2, namely

p2 = physical mass2. Moreover, since we are working at the leading order of perturbation

theory which contributes to the dΣ/dp2, we may neglect the difference between the physical

and the bare masses as higher-order correction and set p2 = m2. Consequently, the integral (12)

reduces to a combination of the integrals (16), thus

dΣ2 loops

dp2

∣

∣

∣

∣

p2=m2

= − λ2

24(4π)4
×
{

1

ǫ
− 2γE + 2 log

4πµ2

m2
− 3

3

}

. (S.52)
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Note: there are two two-loop 1PI diagrams for the Σ(p2), namely (4) and also

(S.53)

However, the diagram (S.51) produces a p–independent Σ, so it does not contribute to the

dΣ/dp2. This means that eq. (S.52) is the entire two-loop contribution to the derivative. Also,

this two-loop contribution is leading (in the power series in λ) because the one-loop contribution

happens to vanish in the λφ4 theory, thus

dΣnet

dp2

∣

∣

∣

∣

p2=M2

= − λ2

24(4π)4
×
{

1

ǫ
− 2γE + 2 log

4πµ2

m2
− 3

3

}

+ O(λ3). (S.54)

Consequently, the field strength renormalization factor is

Z =
1

1 − dΣ
dp2

∣

∣

∣

∣

∣

p2=M2

= 1 +
λ2

6144π4

{

1

ǫ
+ 2 log

µ2

m2
+ C − 3

2

}

+ O(λ3). (S.55)
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