
PHY–396 L. Solutions for homework set #18.

Problem a, part (a):

The Ward–Takahashi identities for the scalar QED have the same general form as for the

fermionic QED. Take an off-shell amplitude for M incoming charged particles, M outgoing

charged particles, and N photons,

= SMN (p′1, . . . , p
′

M ; p1, . . . , pM ; k1, . . . , kN ), (S.1)

all indices suppressed. In this amplitude, all the photonic external legs are amputated, but

the external legs for the charged particles are NOT amputated (the leg bubbles are allowed,

and the propagators for the external legs themselves are included). Now take a similar

amplitude S
µ
M,N+1

involving one more photon (k̃, µ) (other photon’s indices suppressed).

Contracting the µ index with the momentum k̃µ of the same photon produces a linear

combination of the amplitudes SMN without that extra photon, specifically

k̃µ×S
µ
M,N+1

(p′1, . . . , p
′

M ; p1, . . . pM ; k1, . . . , kN , k̃)

= −q

M
∑

j=1

SM,N (p′1, . . . , p
′

M ; p1, . . . , pj + k̃, . . . , pM ; k1, . . . , kN )

+ q

M
∑

j=1

SM,N−1(p
′

1, . . . , p
′

j − k̃, . . . , p′M ; p1, . . . pM ; k1, . . . , kN )

(S.2)

where q is the electric charge of the scalar field. As written, the WT identities (S.2) relate the

complete amplitudes SM,N+1 and SMN , which involve large numbers of Feynman diagrams.

However, there are similar Ward–Takahashi identities that work on the diagram-by-diagram

basis. Indeed, the simplest way to derive the WT identities (S.2) is by proving the following

theorem.
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Theorem: let D be any Feynman diagram contributing to the amplitude SMN and let SD

be it’s contribution. Now consider all diagrams D + γ where one more external photon is

connected to one of the charged lines of the diagram D, but all the other external lines,

internal lines, and vertices are exactly as in D. Let Sµ
D+γ be the net contribution of all these

diagrams — but only these diagrams — to the S
µ
N,M+1

. Then

k̃µ×S
µ
D+γ(p

′

1, . . . , p
′

M ; p1, . . . pM ; k1, . . . , kN , k̃)

= −q

M
∑

j=1

SD(p
′

1, . . . , p
′

M ; p1, . . . , pj + k̃, . . . , pM ; k1, . . . , kN )

+ q

M
∑

j=1

SD(p
′

1, . . . , p
′

j − k̃, . . . , p′M ; p1, . . . pM ; k1, . . . , kN )

(S.3)

The WT identities (S.2) immediately follow from this theorem and the decomposition of the

compete amplitudes into sums over the diagrams,

SMN =
∑

D

SD while S
µ
M,N+1

=

similar
∑

D

S
µ
D+γ . (S.4)

Note: this theorem works equally well for the scalar QED and for the ordinary QED,

although I did not prove it in my class notes. In fact, the general outline of the proof works

similarly for both version of QED. The basic idea is to organize the diagrams D+γ according

to the continuous charged lines of D to which the new photon is connected, thus

S
µ
D+γ =

lines
∑

L

S
µ
D+γ [L]. (S.5)

For each line, we first combine all vertices and propagators of that line, sum over all places

where the new photon is attached to this line, and only then take care of all the other factors

— the other charged lines, if any, all the external attached to those line, all the internal

photons connecting the charged lines to each other or to themselves, and all the momentum
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integrals involving those photons. In obvious notations,

S
µ
D+γ [L] =

∫

· · ·

∫

d(momenta)Rµ
L+γ ×

∏

(

other

factors

)

. (S.6)

where R
µ
L+γ comprises all factors belonging to the line in question. Note that all the other

factors — including the momentum integrals — are exactly the same as for the diagram D

without the new photon, thus

SD =

∫

· · ·

∫

d(momenta)RL ×

(

same other

factors

)

. (S.7)

Consequently, to prove the WT identities (S.3), all we need is to prove them for single

charged lines — open or closed — and the corresponding factors Rµ
L+γ and RL. Specifically,

we need to prove 2 lemmas:

Lemma 1: for an open charged line that begins at an incoming particle of momentum p and

ends at an outgoing particle of momentum p′,

k̃µ × R
µ
L+γ(p

′, p) = qRL(p
′ − k̃, p) − qRL(p

′, p+ k̃). (S.8)

Lemma 2: for a closed charged line, once we integrate over the loop momentum of that line

(but no other momenta), we get

kµ ×R
µ
L+γ = 0. (S.9)

Once we prove these two lemmas, we may plug the RL+γ and the RL into eqs. (S.6) and

(S.7) to immediately obtain

for an open line L

kµ × S
µ
D+γ [L](ext.momenta) = qSL(p

′

L → p′L − k̃) − eSL(pL → pL + k̃),

for a closed line L

kµ × S
µ
D+γ [L](ext.momenta) = 0.

(S.10)

Finally, we sum over the lines L of the diagram D as in eq. (S.5). There are M open lines

— each contributing 2 terms as on the RHS — plus some number of closed line, but they
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do not contribute anything. Altogether, we end up with 2M terms on the RHS,

k̃µ × S
µ
D+γ [net] = q

M
∑

j=1

SD(p
′

j → p′j − k̃) − q

M
∑

j=1

SD(pj → pj + k̃), (S.11)

precisely as in eqs. (S.3).

Lemmas for the fermionic QED.

In the fermionic QED, the factors RL and R
µ
L+γ for an open line L are essentially the

tree-level amplitudes with one incoming charged particle, one outgoing charged particle, and

all the photons attached to this line are treated as external. (If they are internal, their

propagators will be includes with the “other factors” in eqs. (S.6) and (S.7)). Consequently,

Lemma 1 is equivalent to proving the tree-level Ward–Takahashi identities for the SM=1,N

amplitudes (called simply SN in my notes). The proof works exactly as in my notes, except

that here we do not sum over permutations of the N photons we already had before adding

the new photon (k̃, µ).

Likewise, for a closed line L, the factors RL and R
µ
L+γ (integrated over the fermionic

momentum) are the one-loop amplitudes for all the photons attached to L, external or

internal. Consequently, Lemma 2 is equivalent to proving the TW identities for the one-

loop amplitudes for the N -photon, no-fermion amplitudes SM=0,N ≡ iVN . Again, the proof

works exactly as in my notes, except that we do not sum over permutations of the N original

photons.

Lemma 1 for the scalar QED.

The scalar QED has two additional complications beyond those we suffer in the ordinary

QED. First, scalar QED has 3 types of physical vertices (not counting the counterterms),

namely

(S.12)
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Second, the existance of 4–scalar vertices allows different charged lines to touch each other

directly (rather than being connected by a photon propagator). And the RL for an open

line L that touches other charged lines is different from the tree-level S1,N amplitude for one

incoming scalar and one outgoing scalar.

Nevertheless, the RL for any open line L is a tree-level amplitude, and we prove the

lemma 1 by induction in the net number of vertices (of any type) on L, just like I did it for

the ordinary QED. Let’s start with the induction base for n = 0 vertices. In this case, the

RL is simply the scalar propagator,

RL(p
′ = p) = =

i

p2 −m2
(S.13)

and there is only one way to insert a photon,

R
µ
L+γ(p

′, p) = =
i

p′2 −m2
×−iq(p′ + p)µ ×

i

p2 −m2
. (S.14)

Using

kµ = p′µ− pµ =⇒ kµ×(p′+p)µ = (p′−p)µ(p
′+p)µ = p′2− p2 = (p′2−m2)− (p2−m2),

(S.15)

we obtain

kµ × R
µ
L+γ(p

′, p) = iq
1

p′2 −m2
× kµ(p

′ + p)µ ×
1

p2 −m2

=
iq

p2 −m2
−

iq

p′2 −m2

= qRL(p) − qRL(p
′),

(S.16)

which proves the Lemma 1 for n = 0.

Now suppose the lemma holds for open lines L of length n (the induction hypotheses),

so let’s use that to prove the lemma for an open line L′ with one more vertex. Without

loss of generality, we may put the new vertex first, so that L′ comprises the incoming scalar
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propagator, followed by the new vertex, followed by an n-vertex line L, thus

RL′(p′, p) = RL(p
′, p+∆p)×

(

thefirst

vertex

)

×
i

p2 −m2
(S.17)

where ∆p is the net momentum inflow through the first vertex. Since the scalar QED has 3

vertex types, we have to allow for 3 possibilities:

L

(C)

L

(B)

L

(A)

(S.18)

And for each of these three possibilities, we must consider different places where we may

insert the new photon for the L′ + γ.

Case (A): There are 3 places where we can add one more photon to the L′

A: (1) connect

somewhere within L (including the adjacent prpoagators); (2) attach to the one-photon

vertex before the L; (3) split the incoming propagator. Diagrammatically,

L+ γ

(A1)

L

(A2)

L

(A3)

(S.19)
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thus

R
µ
L′+γ(p

′, p) = R
µ
L+γ(p

′, p+ k1)×−iq(2p + k1)
ν ×

i

p2 −m2

+ RL(p
′, p+ k1 + k̃)× 2iq2gµν ×

i

p2 −m2

+ RL(p
′, p+ k1 + k̃)×−iq(2p+ 2k̃ + k1)

ν ×
i

(p+ k̃)2 −m2
×

×−iq(2p + k̃)µ ×
i

p2 −m2
.

(S.20)

Now let’s multiply this formla by the kµ. Using the induction hypotheses for the first term

in the above formula and eq. (S.15) for the last term, we obtain

kµ × R
µ
L′+γ(p

′, p) =
(

kµ × R
µ
L+γ(p

′, p+ k1)
)

×−iq(2p + k1)
ν ×

i

p2 −m2

+ RL(p
′, p+ k1 + k̃)×

(

2iq2gµν k̃µ

)

×
i

p2 −m2

+ RL(p
′, p+ k1 + k̃)×−iq(2p+ 2k̃ + k1)

ν ×

×

(

i

(p+ k̃)2 −m2
× iqkµ(2p+ k̃)µ ×

i

p2 −m2

)

=
(

qRL(p
′ − k̃, p+ k1) − qRL(p

′, p+ k1 + k̃)
)

×

×−iq(2p+ k1)
ν ×

i

p2 −m2

+ RL(p
′, p+ k1 + k̃)× 2iq2k̃ν ×

i

p2 −m2

+ RL(p
′, p+ k1 + k̃)×−iq(2p+ 2k̃ + k1)

ν ×

×

(

iq

p2 −m2
−

iq

(p+ k̃)2 −m2

)

= qRL(p
′ − k̃, p+ k1)×−iq(2p + k1)

ν ×
i

p2 −m2

− RL(p
′, p+ k1 + k̃)×−iq(2p+ 2k̃ + k1)

ν ×
iq

(p+ k̃)2 −m2

while the other terms cancel each other.
(S.21)

On the other hand, without the extra photon

RL′(p′, p) = qRL(p
′, p+ k1)×−iq(2p + k1)

ν ×
i

p2 −m2
, (S.22)
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so the bottom lines of eq. (S.21) amount to

kµ ×R
µ
L′+γ(p

′, p) = qRL′(p′ − k̃, p) − qRL′(p′, p+ k̃). (S.23)

This proves the induction step for the case A.

Cases (B) and (C): Fortunately these two cases are simpler that (A) because one cannot

attach a new photon to the seagull vertex that already has two photons or to the 4–scalar

vertex. This leaves us with only two places for the new photon: (1) within L (including the

adjacent propagators), or (2) split the incoming propagator. Thus, for the case (C)

L+ γ

(C1)

L

(C2)
(S.24)

and hence

R
µ
L′

C+γ
(p′, p) = R

µ
L+γ(p

′, p+∆p)×−iλ×
i

p2 −m2

+ RL(p
′, p+∆p + k̃)×−iλ×

i

(p+ k̃)2 −m2
×

×−iq(2p + k̃)µ ×
i

p2 −m2
.

(S.25)

Multiplying this formula by the k̃µ and proceeding as in case (A), we obtain

kµ × R
µ
L′

C+γ
(p′, p) =

(

kµ ×R
µ
L+γ(p

′, p+∆p)
)

×−iλ×
i

p2 −m2

+ RL(p
′, p+∆p + k̃)×−iλ×

×

(

i

(p+ k̃)2 −m2
×−iqkµ(2p+ k)µ ×

i

p2 −m2

)

(S.26)
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= q
(

RL(p
′ − k̃, p+ k1) − RL(p

′, p+ k1 + k̃)
)

×−iλ×
i

p2 −m2

+ RL(p
′, p+∆p + k̃)×−iλ×

(

iq

p2 −m2
−

iq

(p+ k̃)2 −m2

)

= qRL(p
′ − k̃, p+ k1)×−iλ×

i

p2 −m2

− qRL(p
′, p+∆p+ k̃)×−iλ×

iq

(p+ k̃)2 −m2

while other terms cancel out. (S.27)

At the same time, without the extra photon

RL′

C (p
′, p) = qRL(p

′, p+ k1)×−iλ×
i

p2 −m2
(S.28)

so the bottom lines in eq. (S.27) amount to

kµ × R
µ
L′

C+γ
(p′, p) = qRL′

C
(p′ − k̃, p) − qRL′

C
(p′, p+ k̃). (S.29)

This proves the induction step for the case C.

Finally, the case (B) works similarly to the case (C), the only difference being the seagull

2-photon vertex instead of the 4-scalar vertex. Consequently, all the formulae are just as in

case (C), but with the −iλ factor replaced with the +2iq2gνρ. But since these are overall

factors, they do not affect the proof of the induction step.

The bottom line: We have proven the induction base and the all 3 cases of the induction

steps. By induction, this proves the Lemma 1 for all open charged lines L.

Proving Lemma 2 for the scalar QED. Similrly to what I did in class for the ordinary

QED, for the scalar QED Lemma 2 also follows from Lemma 1. Let L be any closed loop

of charged scalar propagators. Take any vertex V on that loop, remove it, and consider the

rest of the line L − V . Topologically, L − V is an open charged line: the propagator that

immediately follows V in L acts as the incoming propagator of L − V , and the propagator
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immediately preceding V in L acts as the outgoing propagator in L− V ,

L = L−V

V

L−V

V

L−V

V

or or (S.30)

Consequenttly, evaluating the loop L we obtain

RL =

∫

d4p

(2π)4
RL−V (p, p+∆p)× FV (S.31)

where FV is the vertex factor for the vertex V ; depending on the type of that vertex,

FV = −iq(2p +∆p)ν , or FV = +2iq2gνρ, or FV = −iλ. (S.32)

Now let’s attach the new photon γ to the loop L. If V is a two-photon or 4-scalar vertex,

then it cannot take another photon, so the new photon has to attach to the rest of the loop

L− V , thus

L+γ
new

= L−V+γ
new

V

or L−V+γ
new

V

(S.33)
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and hence

R
µ
L+γ =

∫

d4p

(2π)4
R

µ
L−V+γ(p, p+∆p)× FV (S.34)

Multiplying this loop amplitude by the k̃µ of the new photon and using Lemma 1 for the

open line L− V + γ, we obtain

k̃µ × R
µ
L+γ =

∫

d4p

(2π)4
k̃µ ×R

µ
L−V +γ(p, p+∆p)× FV

=

∫

d4p

(2π)4

(

qRL−V (p− k̃, p+∆p) − qRL−V (p, p+∆p+ k̃)
)

× FV

= q

∫

d4p

(2π)4
RL−V (p− k̃, p+∆p)× FV

− q

∫

d4p

(2π)4
RL−V (p, p+∆p+ k̃)× FV .

(S.35)

This formula assumes that V is a two-photon seagull vertex or a 4–scalar vertex. The vertex

factor FV for such a vertex does not depend on the momentum p, so the integrals on the last

two lines of eq. (S.34) are related by a constant shift of the integration variable, p → p+ k̃.

Consequently, the two integrals are equal and cancel each other, leaving us with

k̃µ ×RL+γµ = 0, (S.36)

— which is precisely what we want to prove in Lemma 2.

Caveat: the last step of the argument — shifting the integration variable and subtracting

the integrals — presumes that that the integrals either converge or may be regulated in a

way that: (a) makes the integrals finite (for large but finite UV cutoff Λ); (b) allows shifting

of the loop momentum variable; (c) does not change the Feynman rules in a way that breaks

Lemma 1. Fortunately, the scalar QED has UV regulators which satisfy all 3 criteria — for

example, the dimensional regularization — so the regulated integrals on the last two lines of

eq. (S.35) do cancel each other.

Now suppose the bottom vertex V is a single-photon vertex, which differs from the other

two vertex types in two important ways: First, the vertex factor FV = −iq(2p + ∆p)ν
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depends on the loop momentum p, which spoils the cancelation in eq. (S.35). (Since shifting

the momentum changes FV (p) → FV (−p) 6= F (p).) Second, besides attaching the new

photon to the L − V “open” line, we may also attach it to the vertex V (making it a two

photon vertex), thus

L+γ
new

=

V

L−V+γ
new

+

V

L−V

new

(S.37)

and hence

R
µ
L+γ =

∫

d4p

(2π)4
R

µ
L−V+γ(p, p+k1)×−iq(2p+k1)

ν +

∫

d4p

(2π)4
RL−V (p, p+k1+ k̃)×2iq2gµν

(S.38)

where (k1, ν) is the momentum and index of the old photon attached to the vertex V .

Now let’s multiply both sides of eq. (S.38) by the k̃µ of the new photon. Making use of

Lemma 1 for the first term on the RHS, we obtain
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k̃ ×R
µ
L+γ =

∫

d4p

(2π)4
k̃ × R

µ
L−V+γ(p, p+ k1)×−iq(2p + k1)

ν

+

∫

d4p

(2π)4
RL−V (p, p+ k1 + k̃)× 2iq2gµν × k̃µ

=

∫

d4p

(2π)4

(

qRL−V (p− k̃, p+ k1) − qRL−V (p, p+ k1 + k̃)
)

×−iq(2p+ k1)
ν

+

∫

d4p

(2π)4
RL−V (p, p+ k1 + k̃)× 2iq2k̃ν

= −iq2
∫

d4p

(2π)4
RL−V (p− k̃, p+ k1)× (2p+ k1)

ν

+ iq2
∫

d4p

(2π)4
RL−V (p, p+ k1 + k̃)×

(

(2p+ k1)
ν + 2k̃ν = (2p+ 2k̃ + k1)

ν
)

.

(S.39)

Again, the last two integrals here are related by a constant shift of the integration variable

p → p+ k̃, so they cancel each other. Thus

k̃µ ×RL+γµ = 0, (S.40)

which proves Lemma 2 for the single-photon vertex V . Again, the last argument of our proof

requires convergent integrals or else a UV regulator that makes them converge while allowing

momentum shifts and preserving Lemma 1, but the scalar QED has such regulators, so this

is not a problem.

The bottom line is, we have proved that Lemma 1 for the open charged lines implies

Lemma 2 for the closed charged loops. And given both lemmas, the Ward–Takahashi iden-

tities for the multi-loop diagrams follow in the same way as for the fermionic QED, cf. the

first 21
2
pages of these solutions.
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