
QED Vertex Correction

In these notes I shall calculate the one-loop correction to the 1PI electron-electron-photon

vertex in QED,

ieΓµ(p′, p) = (1)

We are interested in this vertex in the context of elastic Coulomb scattering,

e−

e−

X

X

(2)

so we take the incoming and the outgoing electrons to be on-shell, p2 = p′2 = m2, but the photon

is off-shell, q2 6= 0. Moreover, we put the vertex in the context of the complete electron line —

including the external line factors, thus ū(p′)× ieΓµ × u(p). As discussed in class, this simplifies

the Lorentz and Dirac structure of the vertex and allows us to write it as

Γµ(p′, p) = Fel(q
2)×

(p′ + p)µ

2m
+ Fmag(q

2)×
iσµνqν
2m

= F1(q
2)× γµ + F2(q

2)×
iσµνqν
2m

. (3)
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Working Through the Algebra

At the one-loop level of QED, the 1PI vertex correction comes from a single Feynman diagram

(4)

Using the Feynman gauge for the internal photon’s propagators, this diagram evaluates to

ieΓµ
1 loop(p

′, p) =

∫

reg

d4k

(2π)4
−igνλ

k2 + i0
× ieγν ×

i

6p′+ 6k −m+ i0
× ieγµ ×

i

6p+ 6k −m+ i0
× ieγλ

= e3
∫

reg

d4k

(2π)4
1

k2 + i0
× γν ×

6p′+ 6k +m

(p′ + k)2 −m2 + i0
× γµ ×

6p+ 6k +m

(p+ k)2 −m2 + i0
× γν

= e3
∫

reg

d4k

(2π)4
N µ

D

(5)

where

N µ = γν(6k+ 6p′ +m)γµ(6k+ 6p+m)γν (6)

and

D =
[

k2 + i0
]

×
[

(p+ k)2 −m2 + i0
]

×
[

(p′ + k)2 −m2 + i0
]

. (7)

The purpose of this section of the notes is to simplify these numerator and denominator. Using

the Feynman parameter trick, we may combine the 3 denominator factors as

1

D
=

1
∫∫∫

0

dx dy dz δ(x+ y+ z− 1)
2

[

x((p+ k)2 −m2) + y((p′ + k)2 −m2) + z(k2) + i0
]3 . (8)

2



Inside the big square brackets here we have

[· · ·] = x×
(

(p+ k)2 −m2
)

+ y ×
(

(p′ + k)2 −m2
)

+ z × k2

= k2 × (x+ y + z = 1) + 2kµ(xp + yp′)µ + x(p2 −m2) + y(p′2 −m2

= (k + xp+ yp′)2 − ∆

(9)

where

∆ = (xp + yp′)2 − xp2 − yp′2 + (x+ y)m2

= xy ×
(

2p · p′ = p2 + p′2 − (p′ − p)2
)

− x(1− x)× p2 − y(1− y)× p′2 + (x+ y)×m2

= −xy × q2 − x(1 − x− y)× p2 − y(1− x− y)× p′2 + (x+ y)×m2

= −xy × q2 − xz × p2 − yz × p′2 + (1− z)×m2

(10)

For the on-shell electron momenta, p2 = p′2 = m2, we may further simplify

(1− z)×m2 − xz × p2 − yz × p′2 = m2 ×
(

(1− z) − (x+ y)z = (1− z)2
)

(11)

which gives

∆ = (1− z)2 ×m2 − xy × q2. (12)

Let us also define the shifted loop momentum

ℓ = k + xp + yp′, (13)

then we can rewrite the denominator as

1

D
=

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)
2

[ℓ2 −∆+ i0]3
. (14)

As usual, we plug this denominator into the loop integral (5), then change the order of inte-

gration —
∫

over the loop momentum before
∫

over the Feynman parameters, — and then shift
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the momentum integration variable from k to ℓ, thus

Γµ
1 loop(p

′, p) = −2ie2
1

∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

reg

d4ℓ

(2π)4
N µ

[

ℓ2 −∆+ i0
]3

. (15)

But to make full use of the momentum shift, we need to re-express the numerator N µ in terms of

the shifted momentum ℓ. It would also help to simplify the numerator (6) in the context of this

monstrous integral.

The first step towards simplifying the N µ is obvious: Let us get rid of the γν and γν factors

using the γ matrix algebra, eg., γν 6aγν = −2 6a, etc.. However, in order to allow for the dimensional

regularization, we need to re-work the algebra for an arbitrary spacetime dimension D where

γνγν = D 6= 4. Consequently,

γν 6aγν = −2 6a + (4−D) 6a,

γν 6a 6bγν = 4(ab) − (4−D) 6a 6b,

γν 6a 6b 6cγν = −2 6c 6b 6a + (4−D) 6a 6b 6c,

(16)

and therefore

N µ def
= = γν(6k+ 6p′ +m)γµ(6k+ 6p+m)γν

= −2m2γµ + 4m(p′ + p + 2k)µ − 2(6p+ 6k)γµ(6p′+ 6k)

+ (4−D)(6p′+ 6k −m)γµ(6p+ 6k −m).

(17)

The second step is to re-express this numerator in terms of the loop momentum ℓ rather than

k using eq. (13). Expanding the result in powers of ℓ, we get quadratic, linear and ℓ–independent

terms, but the linear terms do not contribute to the
∫

dDℓ integral because they are odd with

respect to ℓ → −ℓ while everything else in that integral is even. Consequently, in the context of
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eq. (15) we may neglect the linear terms, thus

N µ = −2m2γµ + 4m(p′ + p+ 2ℓ− 2xp− 2yp′)µ

− 2(6p+ 6ℓ− x 6p− y 6p′)γµ(6p′+ 6ℓ− x 6p− y 6p′)

+ (4−D)(6p′+ 6ℓ− x 6p− y 6p′ −m)γµ(6p+ 6ℓ− x 6p− y 6p′ −m)

〈〈skipping terms linear in ℓ 〉〉

∼= −2m2γµ + 4m(p + p′ − 2xp− 2yp′)µ

− 2 6ℓγµ6ℓ − 2(6p− x 6p− y 6p′) γµ (6p′ − x 6p− y 6p′)

+ (4−D) 6ℓγµ6ℓ + (4−D)(6p′ − y 6p′ − x 6p−m) γµ (6p− x 6p− y 6p′ −m).

(18)

Next, we make use of p′ − p = q and 1− x− y = z to rewrite

2xp + 2yp′ = (x+ y)× (p+ p′) + (x− y)× (p− p′),

p + p′ − 2xp − 2yp′ = z × (p′ + p) + (x− y)× q,

p − xp − yp′ = z × p − y × q

= z × p′ − (1− x)× q,

p′ − xp − yp′ = z × p′ + x× q

= z × p + (1− y)× q,

(19)

and consequently

N µ ∼= −2m2γµ + 4mz(p′ + p)µ + 4m(x− y)qµ

+ (−2 + 4−D)×6ℓγµ6ℓ

− 2(z 6p′ + (x− 1) 6q) γµ (z 6p+ (1− y) 6q)

+ (4−D)(z 6p′ + x 6q −m) γµ (z 6p− y 6q −m).

(20)

The third step is to make use of the external fermions being on-shell. This means more than

just p2 = p′2 = m2: We also sandwich the vertex ieΓµ between the Dirac spinors ū(p′) on the left

and u(p) on the right. The two spinors satisfy the appropriate Dirac equations 6 pu(p) = mu(p)

and ū(p′) 6p′ = ū(p′)m, so in the context of ū(p′)Γµu(p),

A×6p ∼= A×m and 6p′ ×B ∼= m×B (21)

for any terms in Γµ that look like A× 6 p or 6 p′ × B for some A or B. Consequently, the terms on
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the last two lines of eq. (20) are equivalent to

(z 6p′ + (x− 1) 6q) γµ (z 6p+ (1− y) 6q) ∼= (zm+ (x− 1) 6q) γµ (zm+ (1− y) 6q)

= z2m2 × γµ − (1− x)(1− y)×6qγµ 6q

+ z(x− y)m×
(

1
2{γ

µ,6q} = qµ
)

+ z(2− x− y)m×
(

1
2 [γ

µ,6q] = −iσµνqν

)

(z 6p′ + x 6q −m) γµ (z 6p− y 6q −m) ∼= ((z − 1)m+ x 6q) γµ ((z − 1)m− y 6q)

= (1− z)2m2 × γµ − xy×6qγµ 6q

− (1− z)(x− y)m×
(

1
2{γ

µ,6q} = qµ
)

+ (1− z)(x+ y)m×
(

1
2 [γ

µ,6q] = −iσµνqν

)

.

(22)

Let’s plug these expressions back into eq. (20), collect similar terms together, and make use of

1− x− y = z. This gives us

N µ ∼= −(D − 2) 6ℓγµ6ℓ + 4mz(p′ + p)µ

+ m2γµ ×
(

−2− 2z2 + (4−D)(1− z)2
)

+ 6qγµ6q ×
(

2(z + xy) − (4−D)xy
)

+ mqµ × (x− y)
(

4− 2z − (4−D)(1− z)
)

+ imσµνqν ×
(

2z(1 + z) − (4−D)(1− z)2
)

.

(23)

Furthermore, in the context of the Dirac sandwich ū(p′)Γµu(p) we have

6qγµ6q = 2qµ 6q − q2γµ ∼= −q2γµ (24)

because ū(p′) 6qu(p) = 0, and also

(p′ + p)µ ∼= 2mγµ − iσµνqµ (25)

(the Gordon identity). Plugging these formulae into eq. (23), we arrive at

N µ ∼= −(D − 2) 6ℓγµ6ℓ + m2γµ ×
(

8z − 2(1 + z2) + (4−D)(1− z)2
)

− q2γµ ×
(

2(z + xy)− (4−D)xy
)

− imσµνqν × (1− z)
(

2z + (4−D)(1− z)
)

+ mqµ × (x− y)
(

4− 2z − (4−D)(1− z)
)

.

(26)
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To further simplify this expression, let us go back to the symmetries of the integral (15). The

integral over the Feynman parameters, the integral
∫

dDℓ, and the denominator [l2 − ∆]3 are all

invariant under the parameter exchange x ↔ y. In eq. (26) for the numerator, the first two lines

are invariant under this symmetry, but the last line changes sign. Consequently, only the first two

lines contribute to the integral (15) while the third line integrates to zero and may be disregarded,

thus

N µ ∼= −(D − 2) 6ℓγµ6ℓ + m2γµ ×
(

8z − 2(1 + z2) + (4−D)(1− z)2
)

− q2γµ ×
(

2(z + xy)− (4−D)xy
)

− imσµνqν × (1− z)
(

2z + (4−D)(1− z)
)

.
(27)

Finally, thanks to the Lorentz invariance of the
∫

dDℓ integral,

ℓλℓν ∼= gλν ×
ℓ2

D
, (28)

and hence

6ℓγµ6ℓ = γλγµγν × ℓλℓν ∼= γλγµγν × gλν
ℓ2

D
= −(D − 2)γµ ×

ℓ2

D
. (29)

Plugging this formula into eq. (26) and grouping terms according to their γ–matrix structure, we

arrive at

N µ = N1 × γµ − N2 ×
iσµνqν
2m

(30)

where

N1
∼=

(D − 2)2

D
× ℓ2 +

(

8z − 2(1 + z2) + (4−D)(1− z)2
)

×m2

−
(

2(z + xy)− (4−D)xy
)

× q2

=
(D − 2)2

D
× ℓ2 − (D − 2)×∆ + 2z × (2m2 − q2), (31)

N2
∼= (1− z)

(

4z + 2(4−D)(1− z)
)

×m2. (32)

Note that splitting the numerator according to eq. (30) is particularly convenient for calculating

the electron’s form factors:

Γµ
1 loop = F 1 loop

1 (q2)× γµ + F 1 loop
2 (q2)×

iσµνqν
2m

, (33)
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F 1 loop
1 (q2) = −2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N1

[

ℓ2 −∆+ i0
]3 , (34)

F 1 loop
2 (q2) = +2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N2

[

ℓ2 −∆+ i0
]3 . (35)

Electron’s Gyromagnetic Moment

As explained earlier in class, electron’s spin couples to the static magnetic field as

Ĥ ⊃
−eg

2me
S ·B where g = 2

(

Fmag = F1 + F2

)
∣

∣

∣

q2=0
. (36)

The electric form factor F1 ≡ Fel for q
2 = 1 is constrained by the Ward identity,

F tot
1 = F tree

1 + F loops
1 + F counter−terms

1 −−−→
q2→0

1. (37)

Therefore, the gyromagnetic moment is

g = 2 + 2F2(q
2 = 0) (38)

where F2 = F loops
2 because the there are no tree-level or counter-term contributions to the F2,

only to the F1. Thus, to calculate the g − 2 at the one-loop level, all we need is to evaluate the

integral (35) for q2 = 0.

Let’s start with the momentum integral

∫

dDℓ

(2π)D
N2

[

ℓ2 −∆+ i0
]3 (39)

where ∆ = (1− z)2m2 for q2 = 0 and N2 is as in eq. (32). Because the numerator here does not

depend on the loop momentum ℓ, this integral converges in D = 4 dimensions and there is no
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need for dimensional regularization. All we need is to rotate the momentum into Euclidean space,

∫

d4ℓ

(2π)4
N2

[

ℓ2 −∆+ i0
]3 = N2 ×

∫

i d4ℓE
(2π)4

1

−(ℓ2E +∆)3

=
−iN2

16π2
×

∞
∫

0

dℓ2E
ℓ2E

(ℓ2E +∆)3

=
−iN2

16π2
×

1

2∆

=
−i

32π2
×

N2 = 4z(1− z)m2 〈〈for D = 4〉〉

∆ = (1− z)2m2 〈〈for q2 = 0〉〉

=
−i

32π2
×

4z

1− z
.

(40)

Substituting this formula into eq. (35), we have

F 1 loop
2 (q2 = 0) =

e2

16π2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)×
4z

1− z
. (41)

The integrand here depends on z but not on the other two Feynman parameters, so we can

immediately integrate over x and y and obtain

1
∫∫

0

dx dy δ(x+ y + z − 1) =

1−z
∫

0

dx = 1− z. (42)

Consequently,

F 1 loop
2 (q2 = 0) =

e2

16π2
×

1
∫

0

dz (1− z)×
4z

1− z
=

e2

16π2
× 2 =

α

2π
(43)

and the gyromagnetic moment is

g = 2 +
α

π
+ O(α2). (44)
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Higher-loop calculations are more complicated because the number of diagrams grows very

rapidly with the number of loops; at 4-loop order there are thousands of diagrams, and one needs

a computer just to count them! Also, at higher orders one has to include the effects of strong

and weak interactions because the photons interact with hadrons and W± particles, which in

turn interact with other hadrons, Z0, Higgs, etc., etc. Nevertheless, people have calculated the

electron’s and muon’s g factors up to the order α4 back in the 1970s, and more recent calculations

are good up to the order α5. Meanwhile, the experimentalists have measured ge to a comparable

accuracy of 12 significant digits and gµ to 9 significant digits

ge = 2.0023193043622(15), gµ = 2.0023318414(12). (45)

The theoretical value of ge is in good agreement with the experimental value, while for the muon

there is a small discrepancy gexpµ − gtheoryµ ≈ (59 ± 13 ± 12) · 10−10. This discrepancy indicates

some physics beyond the Standard Model, maybe supersymmetry, maybe something else. In

general, effect of heavy particles on gµ is proportional to (mµ/Mheavy)
2, that’s why gµ is much

more sensitive to new physics than ge.

For a recent review of high-precision ge and gµ — both the experiments and the theory — see

http://arxiv.org/abs/hep-ph/0703049.

I would like to complete this section of the notes by calculating the F 1 loop
2 (q2) form factor for

q2 6= 0. Proceeding as in eq. (40) but letting ∆ = (1− z)2m2 − xyq2, we have

∫

d4ℓ

(2π)4
N2

[

ℓ2 −∆+ i0
]3 =

−i

32π2
×

4z(1 − z)m2

(1− z)2m2 − xyq2
(46)

and hence

F 1 loop
2 (q2) =

e2

16π2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)×
4z(1 − z)m2

(1− z)2m2 − xyq2
. (47)

To evaluate this integral over Feynman parameters, we change variables from x, y, z to w = 1− z
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and ξ = x/(x+ y),

x = wξ, y = w(1− ξ), z = 1− w, dx dy dz δ(x+ y + z − 1) = w dw dξ. (48)

Consequently,

F 1 loop
2 (q2) =

e2

16π2

1
∫

0

dξ

1
∫

0

dww ×
4(1− w)w ×m2

w2 ×m2 − w2ξ(1− ξ)× q2

=
e2

16π2

1
∫

0

dξ
m2

m2 − ξ(1− ξ)q2
×

1
∫

0

dww ×
4w(1− w)

w2

=
e2

8π2
×

1
∫

0

dξ
m2

m2 − ξ(1− ξ)q2

=
α

2π
×

4m2

√

q2 × (4m2 − q2)
× arctan

√

q2

4m2 − q2

=
α

2π
×

4m2

√

(−q2)× (4m2 − q2)
× log

√

4m2 − q2 +
√

−q2

2m
.

(49)

For q2 < 0 and −q2 ≫ m2,

F 1 loop
2 (q2) ≈

α

2π
×

2m2

−q2
× log

−q2

m2
. (50)
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The Electric Form Factor

Now consider the electric form factor F1(q
2). In the first section we have obtained

F 1 loop
1 (q2) = −2ie2

1
∫∫∫

0

dx dy dz δ(x+ y + z − 1)

∫

dDℓ

(2π)D
N1

[

ℓ2 −∆+ i0
]3 , (34)

for

N µ
1

∼=
(D − 2)2

D
× ℓ2 − (D − 2)×∆ + 2z × (2m2 − q2) (31)

and ∆ = (1− z)2m2 − xyq2.

Let’s start by calculating the momentum integral in eq. (34). The numerator N1 depends on

ℓ as aℓ2 + b, so there is a logarithmic UV divergence for ℓ → ∞; to regularize this divergence, we

work in D = 4− 2ǫ dimensions. Thus,

−i

∫

reg

d4ℓ

(2π)4
aℓ2 + b

[ℓ2 −∆+ i0]3
≡ −iµ4−D

∫

dDℓ

(2π)D
aℓ2 + b

[ℓ2 −∆+ i0]3
=

= −iµ4−D

∫

idDℓE
(2π)D

−aℓ2E + b

−[ℓ2E +∆]3

= µ4−D

∫

dDℓE
(2π)D

×

[

aℓ2E − b

(ℓ2E +∆)3
=

a

(ℓE +∆)2
−

a∆+ b

(ℓ2E +∆)3

]

= µ4−D

∫

dDℓE
(2π)D

∞
∫

0

dt
(

a× t − (a∆+ b)× 1
2t

2
)

× e−t(∆+ℓ2E)

=

∞
∫

0

dt
(

a× t − (a∆+ b)× 1
2t

2
)

e−t∆ × µ4−D

∫

dDℓE
(2π)D

e−tℓ2e

=

∞
∫

0

dt
(

a× t − (a∆+ b)× 1
2t

2
)

e−t∆ ×
µ4−D

(4πt)D/2

=
µ4−D

(4π)D/2

∞
∫

0

dt e−t∆ ×
(

a× t1−(D/2) − 1
2(a∆+ b)× t2−(D/2)

)

=
µ4−D

(4π)D/2

{

a× Γ
(

2− D
2

)

×∆
D
2 −2 − 1

2(a∆+ b)× Γ
(

3− D
2

)

×∆
D
2 −3

}

→
(4πµ2)ǫ

16π2
×

Γ(1 + ǫ)

∆ǫ
×

{

a

ǫ
−

a∆+ b

2∆

}

.

(51)
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In light of eq. (31),

a =
(D − 2)2

D
, b = 2z × (2m2 − q2) − (D − 2)×∆, (52)

so on the last line of eq. (51)

a

ǫ
−

a∆+ b

2∆
=

1− ǫ

ǫ
−

z(2m2 − q2)

∆
. (53)

Consequently, the momentum integral in eq. (34) for the electric form factors evaluates to

−2ie2µ4−D

∫

dDℓ

(2π)D
N1

[ℓ2 −∆+ i0]3
= (54)

=
α

2π

(

4πµ2

∆

)ǫ{

Γ(ǫ)× (1− ǫ) − Γ(1 + ǫ)×
z × (2m2 − q2)

∆

}

,

and now we need to integrate this expression over the Feynman parameters.

Changing the integration variables from x, y, z to w and ξ according to eq. (48), we have

F 1 loop
1 (q2) =

α

2π
(4πµ2)ǫ

1
∫

0

dξ

1
∫

0

dww ×















(1− ǫ)Γ(ǫ)×
1

[∆(w, ξ)]ǫ

− Γ(1 + ǫ)×
(1− w)(2m2 − q2)

[∆(w, ξ)]1+ǫ















(55)

where

∆(w, ξ) = (1− z)2m2 − xyq2 = w2 ×
(

m2 − ξ(1− ξ)q2
)

, (56)

or equivalently,

∆(w, ξ) = w2 ×H(ξ) where H(ξ)
def
= m2 − ξ(1− ξ)q2. (57)

The form (57) is particularly convenient for evaluating the
∫

dw integral in eq. (55), which becomes

1
∫

0

dw

{

2(1− ǫ)Γ(ǫ)

Hǫ
×

w

w2ǫ
− 2Γ(1 + ǫ)×

2m2 − q2

H1+ǫ
×

w(1− w)

w2+2ǫ

}

. (58)

Near the lower limit w → 0, the integrand is dominated by the second term, which is proportional
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to w−1−2ǫ. But for any ǫ ≥ 0 — i.e., for any dimension D ≤ 4 — the integral

positive
∫

0

dw

w1+2ǫ
(59)

diverges: For D = 4 the divergence is logarithmic while for D < 4 it becomes power-like.

Infrared Divergence.

Physically, the divergence (59) is infrared rather than ultraviolet, that’s why it gets worse as we

lower the dimension D. Indeed, let’s go back to the diagram (4) and look at the denominator D in

eqs. (5) and (7). Taking the electron’s momenta p and p′ on-shell before introducing the Feynman

parameters, we have

(p+ k)2 − m2 = k2 + 2kp and likewise (p′ + k)2 − m2 = k2 + 2kp′. (60)

Therefore, for k → 0 the denominator behaves as D ∝ |k|4 while the numerator N µ remains finite,

which makes the integral
∫

dDk
N µ

D
∝

∫

dDk
1

|k|4
(61)

diverge for k → 0. In D = 4 dimensions, the infrared divergence here is logarithmic, while in

lower dimensions D < 4 it becomes power-like, i.e. O
(

(1/kmin)
4−D

)

— precisely as in eqs. (59)

and (58).

We can regularize the infrared divergence (61) — and also (59) — by analytically continuing

spacetime dimension to D > 4. Such dimensional regularization of the IR divergences is used in

many situations in both QFT and condensed matter. However, taking D > 4 makes the ultraviolet

divergences worse, so if some amplitude has both UV and IR divergences, we cannot cure both

of them at the same time by analytically continuing to D 6= 4. In particular, when calculating

the electric form factor F1(q
2) of the electron, we need D < 4 to regulate the momentum integral

∫

dDℓ, but then we need D > 4 to regulate the integral over the Feynman parameters.

A common dirty trick is to first continue to D < 4 and evaluate the
∫

dDℓ momentum integral,

then analytically continue the result to D > 4 and integrate over the Feynman parameters, and

then continue the final result to D = 4. However, in this kind of dimensional regularization it’s

14



hard to disentangle the 1/ǫ poles coming from the UV divergence log(Λ2/µ2) from the 1/ǫ poles

coming from the IR divergence log(µ2/k2min), so we are not going to use it here.

Instead, we are going to use DR for the UV divergence only, while the IR divergence is regulated

by a tiny but not-quite-zero photon mass m2
γ ≪ m2

e. Strictly speaking, a massive vector particle

has three polarization states and its propagator is

=
−i

k2 −m2
γ + i0

×

(

gµν −
kµkν

m2
γ

)

. (62)

However, the longitudinal polarization of the massive but ultra-relativistic photon does not couple

to a conserved current, so we are going to disregard the kµkν terms in the propagator (62) and

use

=
−igµν

k2 −m2
γ + i0

. (63)

In other words, we use the Feynman gauge in spite of the photon’s mass; this is not completely

consistent, but the inconsistencies go away in the mγ → 0 limit.

Using this infrared regulator for the internal photon line in the one-loop diagram (4), we get

the vertex amplitude that looks exactly like eq. (5) except for one factor in the denominator,

1

k2 + i0
becomes

1

k2 −m2
γ + i0

. (64)

In terms of the integral (15), this change has no effect on the numerator N µ or the loop momentum

ℓ (which remains exactly as in eq. (13)), but the ∆ in the denominator becomes

∆′(x, y, z) = ∆(x, y, z) + z ×m2
γ . (65)

Consequently, the electric form factor is

F 1 loop
1 (q2) =

∫

d(FP )

∫

µ4−D dDℓ

(2π)D
−2ie2 ×N1

[ℓ2 −∆′ + i0]3
, (66)

exactly as in eq. (34), except for the ∆′ instead of the ∆ in the denominator. The momentum

integral here converges for any D < 4 and it evaluates exactly as in eq. (51). The only subtlety
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here is that in the numerator, the ℓ–independent term b involves the un-modified ∆ instead of ∆′

(cf. eq. (52)), but we can fix that by writing

b = 2z ×
(

2m2
e − q2 + (1− ǫ)m2

γ

)

− 2(1− ǫ)×∆′. (67)

Hence, instead of eq. (55) we get

F 1 loop
1 (q2) =

α

2π
(4πµ2)ǫ

1
∫

0

dξ

1
∫

0

dww ×















(1− ǫ)Γ(ǫ)×
1

[∆′(w, ξ)]ǫ

− Γ(1 + ǫ)×
(1− w)(2m2

e − q2 + (1− ǫ)m2
γ)

[∆′(w, ξ)]1+ǫ















(68)

where

∆′(w, ξ) = (1− z)2m2
e − xyq2 + zm2

γ = w2 ×H(ξ) + (1− w)×m2
γ . (69)

Note that the photon’s mass is tiny, m2
γ ≪ m2

e, q
2; were it not for the IR divergences, we

would have used m2
γ = 0. This allows us to neglect various O(m2

γ) terms in eq. (68) except when

it would cause a divergence for w → 0; in particular, we may neglect the (1 − ǫ)m2
γ term in the

numerator of the second term in the integrand. As to the denominators, in eq. (69) the second

term containing the photon’s mass becomes important only in the w → 0 limit, and in that limit

(1− w)m2
γ → m2

γ . Thus, we approximate

∆′(w, ξ) ≈ w2 ×H(ξ) + m2
γ (70)

and the
∫

dw integral in eq. (68) becomes

1
∫

0

dww ×

{

(1− ǫ)Γ(ǫ)×
1

[w2H(ξ) +m2
γ ]

ǫ
− Γ(1 + ǫ)×

(1− w)(2m2
e − q2)

[w2H(ξ) +m2
γ ]

1+ǫ

}

=
(1− ǫ)Γ(ǫ)

Hǫ
×

1
∫

0

dww

[w2 + (m2
γ/H)]ǫ

+ Γ(1 + ǫ)
2m2

e − q2

H1+ǫ
×

1
∫

0

dww2

[w2 + (m2
γ/H)]1+ǫ

− Γ(1 + ǫ)
2m2

e − q2

H1+ǫ
×

1
∫

0

dww

[w2 + (m2
γ/H)]1+ǫ

.

(71)

16



For 0 < ǫ < 1
2 — i.e., for 3 < D < 4 — the integrals on the second and third lines here converge

even for m2
γ = 0,

1
∫

0

dww

[w2]ǫ
=

1

2− 2ǫ
for ǫ < 1,

1
∫

0

dww2

[w2]1+ǫ
=

1

1− 2ǫ
for ǫ < 1

2 ,

(72)

so we may just as well evaluate them without the photon’s mass. Only on the last line of eq. (71)

we do need m2
γ 6= 0 to make the integral converge for some D ≤ 4:

1
∫

0

dww

[w2 + (m2
γ/H)]1+ǫ

=
−1

2ǫ

1

[w2 + (m2
γ/H)]ǫ

∣

∣

∣

∣

1

0

=
1

2ǫ

[(

H

m2
γ

)ǫ

− 1

]

. (73)

Combining all these
∫

dw integrals together, we get

1
∫

0

dw
{

· · ·
}

=
Γ(ǫ)

2Hǫ
+

Γ(1 + ǫ)

1− 2ǫ
×

2m2
e − q2

H1+ǫ
−

Γ(1 + ǫ)

2ǫ
×

2m2
e − q2

H1+ǫ
×

[(

H

m2
γ

)ǫ

− 1

]

=
Γ(ǫ)

2Hǫ
×

{

1 +
2m2

e − q2

H
×

[

1

1− 2ǫ
−

(

H

m2
γ

)ǫ]}
(74)

and hence

F 1 loop
1 (q2) =

α

4π

1
∫

0

dξ Γ(ǫ)

(

4πµ2

H(ξ)

)ǫ

×

{

1 +
2m2

e − q2

H(ξ)
×

[

1

1− 2ǫ
−

(

H(ξ)

m2
γ

)ǫ]}

(75)

where

H(ξ) = m2
e − ξ(1− ξ)q2. (57)

Before we even try to perform this last integral, let’s remember that

Γµ
net = γµtree + Γµ

loops + δ1 × γµ (76)
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and hence

F net
1 (q2) = 1tree + F loops

1 (q2) + δ1 . (77)

Also, the net electric charge does not renormalize, so we must have

F net
1 (q2) → 1 for q2 → 0 (78)

and hence

δ1 = −F loops
1 (q2 = 0). (79)

To calculate the counterterm δ1 to order α we use eq. (75) for q2 = 0, in which case H(ξ) ≡ m2
e

and the
∫

dξ becomes trivial (the integrand does not depend on ξ at all). Thus,

δ1 = −
α

4π
Γ(ǫ)

(

4πµ2

m2
e

)ǫ

×

{

1 +
2

1− 2ǫ
− 2

(

m2
e

m2
γ

)ǫ}

+ O(α2). (80)

This formula holds for any dimension D between 3 and 4 (i.e., 0 < ǫ < 1
2). In the D → 4 limit, it

becomes

δ1 = −
α

4π
×

{

1

ǫ
− γE + log

4πµ2

m2
e

+ 4 − 2 log
m2

e

m2
γ

}

+ O(α2). (81)

Now let’s go back to the electric form factor F net
1 (q2) for q2 6= 0. According to eqs. (77)

and (79), at the one-loop level

F net
1 (q2) − 1 = F 1 loop

1 (q2) − F 1 loop
1 (0) + O(α2) (82)

where F 1 loop
1 (q2) is given by eq. (75). Taking the ǫ → 0 limit of that formula, we arrive at

F 1 loop
1 (q2) =

α

4π

1
∫

0

dξ

{

1

ǫ
− γE + log

4πµ2

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
H(ξ)

m2
γ

]}

, (83)

and now we should subtract a similar a similar expression for q2 = 0. This subtraction cancels

the UV divergence and the associated 1/ǫ pole but not the IR divergence. Moreover, not only the
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subtracted one-loop amplitude depends on the IR regulators, but the coefficient of the logm2
γ has

a non-trivial momentum dependence. Indeed,

F 1 loop
1 (q2) − F 1 loop

1 (0) =

=
α

4π

1
∫

0

dξ

{

log
m2

e

H(ξ)
+

2m2
e − q2

H(ξ)
×

[

2 − log
H(ξ)

m2
γ

]

− 2

[

2 − log
m2

e

m2
γ

]}

=
α

4π

1
∫

0

dξ

{(

1 +
2m2

e − q2

H(ξ)

)

× log
m2

e

H(ξ)
+

(

2m2
e − q2

H(ξ)
− 2

)

×

[

2 − log
m2

e

m2
γ

]}

= −
α

4π
×

{

h(q2/m2
e) + fIR(q

2/m2
e)× log

m2
e

m2
γ

}

(84)

where h(q2/m2
e) and fIR(q

2/m2
e) are finite (in the limit mγ → 0) functions of the q2/m2

e ratio;

both of them vanish for q2 = 0. Specifically,

fIR(q
2/m2

e) =

1
∫

0

dξ

(

2m2
e − q2

H(ξ)
− 2 =

−q2 × (1− 2ξ + 2ξ2)

m2
e − q2 × ξ(1− ξ)

)

, (85)

which happens to be the same function that governs the IR divergence of the the soft-photon

bremsstrahlung. In terms of §6.1 of the Peskin & Schroeder textbook,

fIR(q
2/m2

e) = I(v,v′) =

∫

d2Ωn

4π

[

−

(

p′µ

(np′)
−

pµ

(np)

)2
]n0=|n|=1

, (86)

see textbooks eqs. (6.69–70) for the proof. Note: my definition of the iIR differs from the textbook’s

by a factor of 2.

Altogether, the electric form factor of the electron is

F net
1 (q2) = 1 −

α

4π
×

{

g(q2/m2
e) + fIR(q

2/m2
e)× log

m2
e

m2
γ

}

+ O(α2). (87)

Implications of this formula will be discussed in class; see also §6.4 of the textbook.
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