
Konishi Anomaly

Consider the SQED with massless charged fields A and B. Classically, it has an axial

symmetry A→ e+iϕA, B → e+iϕB and hence a conserved axial current

Jax = Ae+2gVA + B e−2gVB, (1)

D2Jax = D
2
Jax = 0 (classically). (2)

In components

Jax(x, θ, θ̄) = (θσµθ̄)× j5µ(x) + other combinations of θ and θ̄, (3)

j5µ = ψAσ̄
µψA + ψBσ̄

µψB + (iA†DµA− iADµA†) + (iB†DµB − iBDµB†)

= Ψγ5γµΨDirac + bosonic. (4)

Eqs. (2) imply inter alia that the ordinary axial current j5µ(x) is conserved, ∂µj
5µ = 0.

In the ordinary QED with a massless electron, the loop corrections destroy the conser-

vation of the axial current. Instead of ∂µj
5µ = 0, we have the Adler–Bell–Jackiw anomaly

∂µj
5µ =

g2

16π2
ǫκλµνFκλFµν . (5)

The superfield analogue of this anomaly is the Konishi anomaly: instead of the classical

eqs. (2), the current superfield Jax satisfies

−1
4D

2
Jax = −

g2

8π2
WαWα ,

−1
4D

2Jax = −
g2

8π2
W α̇W

α̇
.

(6)

Before we derive the Konishi anomaly, let’s verify that it includes the ordinary Adler–

Bell–Jackiw anomaly (5). Reversing eq. (3), we have

j5µ(x) = −1
4σ

µ
αα̇

[

D
α̇
, Dα

]

Jax(x, θ, θ̄)
∣

∣

∣

θ=θ̄=0=
⇒

∂µj
5µ(x) = −1

4∂αα̇
[

D
α̇
, Dα

]

Jax(x, θ, θ̄)
∣

∣

∣

θ=θ̄=0
= −

i

16

[

D
2
, D2

]

Jax(x, θ, θ̄)
∣

∣

∣

θ=θ̄=0
.

(7)
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For the RHS here, the Konishi anomaly (6) gives us

[

D
2
, D2

]

Jax =
g2

2π2
×

(

D2(WαWα) − D
2
(W α̇W

α̇
)
)

, (8)

hence

∂µj
5µ =

−ig2

32π2

[

D2(WαWα) − D
2
(W α̇W

α̇
)
]

θ=θ̄=0

=
−ig2

8π2

∫

d2θWαWα +
ig2

8π2

∫

d2θ̄ W α̇W
α̇

=
g2

4π2
× Im

∫

d2θWαWα

=
g2

4π2
×

(

ǫκλµνFκλFµν

4
+ ∂µ

(

λσµλ̄
)

)

.

(9)

Up to a total divergence of the photino current λσµλ̄, this is indeed the Adler–Bell–Jackiw

anomaly (5).

Conversely, given the Adler–Bell–Jackiw anomaly and SUSY, applying supersymmetry

transformations to both sides of eq. (5) gives us the other components of the Konishi anomaly.

In this way, one may derive eqs. (6) without messing with the superfield perturbation theory.

However, in these lecture notes I shall use the super-diagram approach.

Diagrammatically,

Jax[V ] = (10)

and the individual diagrams contributing to this amplitude look just like the (n+ 1)–vector

amplitudes, except for the plus sign in eq. (1). Naively, these diagrams should cancel each

other when we act with D2 or D
2
on the Jax — this works similarly to the Ward identities

for the multi-photon amplitudes, cf. homework set #5. Unfortunately, the diagrams con-

tributing to (10) diverge, so we must regulate them first and only then check if they really

cancel each other or only seem to cancel. It turns out that all the UV regulators would spoil

the cancellation of some one-loop diagrams, but the net mis-cancellation is the same for any

UV regulator, hence the Konishi anomaly (6).
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In these notes, I am going to derive the anomaly eqs. (6) at the one-loop level using the

Pauli–Villars regulator.
⋆
This means adding to the theory some very heavy fields with wrong

norm in the Hilbert space and hence wrong sign for each heavy loop. In our case, we add a

pair of wrong-norm charged chiral superfields X and Y , so the net Lagrangian becomes

Lreg =

∫

d4θ
(

1
8V D

αD
2
DαV + Ae+2gVA + B e−2gVB

)

+

∫

d4θ
(

X e+2gVX + Y e−2gV Y
)

− Λ

∫

d2θ XY + H. c.

(11)

for some very large mass Λ acting as a UV cutoff scale. Consequently, the regulated vector

and axial currents become

J reg
vec = Ae+2gVA − B e−2gVB + X e+2gVX − Y e−2gV Y, (12)

J reg
ax = Ae+2gVA + B e−2gVB + X e+2gVX + Y e−2gV Y, (13)

and their conservation or non-conservation at the classical level follow from the field equations

for all the charged fields in the Lagrangian (11). Specifically,

−1
4D

2
(

Ae+2gV
)

= −1
4D

2
(

B e−2gV
)

= 0,

−1
4D

2
(

X e+2gV
)

= +ΛY, −1
4D

2
(

Y e−2gV
)

= +ΛX,

−1
4D

2
(

e+2gVA
)

= −1
4D

2
(

e−2gVB
)

= 0,

−1
4D

2
(

e+2gVX
)

= +Λ∗Y , −1
4D

2
(

e−2gV Y
)

= +Λ∗X,

(14)

hence classically

1
4D

2
J reg
vec = +ΛY X − ΛXY = 0,

−1
4D

2J reg
vec = +Λ∗Y X − Λ∗XY = 0,

(15)

but

−1
4D

2
J reg
ax = +ΛY X + ΛXY = +2ΛYX,

−1
4D

2J reg
ax = +Λ∗Y X + Λ∗XY = +2Λ∗XY .

(16)

For the quantum theory, eqs. (15) mean that the vector current is indeed conserved. At the

⋆ The dimensional reduction — like all flavors of dimensional regularization — is difficult to apply to

amplitudes involving the ǫ
κλµν tensor, so it’s rather inconvenient for calculating the anomalies.
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same time, eqs. (16) tell us that

−1
4D

2
J reg
ax (y, θ) = +2Λ× 〈XY (y, θ)〉 ,

−1
4D

2J reg
ax (ȳ, θ̄) = +2Λ∗ ×

〈

XY (ȳ, θ̄)
〉

(17)

where the expectation values 〈XY 〉 and
〈

XY
〉

vanish in the vacuum but may become non-

trivial when the EM fields are present. Below, we shall see that at the one-loop level

〈XY 〉 =
1

Λ
×

−g2

16π2
WαWα + O(1/Λ2Λ∗), (18)

〈

XY
〉

=
1

Λ∗
×

−g2

16π2
W α̇W

α̇
+ O(1/Λ∗2Λ). (19)

Consequently, in the Λ → ∞ limit eqs. (17) give a finite but non-zero result for the non-

conservation of the axial current, namely the Konishi anomaly (6).

Diagrammatically, the loop corrections to the 〈XY 〉 can be summarized as

X

Y

(20)

Here at the vertex there are no
∫

d4θ or
∫

d4x integrals, so the amplitude has form 〈XY 〉 =

some composite superfield. Also, in that composite superfield we do not distinguish between

different V1, . . . , Vn, hence overall combinatoric factor 1/n!. Finally, the loop (20) carries an

overall minus sign due to wrong norm of the Pauli–Villars fields X and Y .

By charge conjugation, the number of the external vector lines in the amplitudes (20)

must be even, so let’s start with the two-vector case. At the one-loop level we have 6
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diagrams, namely

= +

+ +

+ +

(21)

Note combinatorics: the scalar line has a definite direction — from X to Y , so the two

vertices in the first 4 diagrams are distinct. OOH, the two photons are identical, so we do

not add diagrams related to the first 4 by photon permutation; instead, we simply drop the

combinatoric factor 1
2 . But for the last two diagrams both identical photons come to the

same vertex, so we keep the 1
2 factor.

The Pauli–Villars fields X and Y in all the loops (21) are very heavy — indeed their

mass |Λ| serves as the UV cutoff scale of the regulated theory. Since this mass is much larger

than any of the external momenta p, we may approximate

1

(k + p)2E + |Λ|2
≈

1

k2E + |Λ|2
. (22)

for all values of the Euclidean loop momentum k (k ∼ p, or k ∼ Λ, or anything in-between).

In other words, we may approximate all the propagators in the loops (21) as having the same

momentum k, at least in the denominator. Thus, for the last two diagrams in eq. (21) we

have

〈XY 〉5+6 = −
1

2

∫

d4k

(2π)4

(

i

k2 − |Λ|2 + i0

)2

×











Λ∗D
2

−4
(4ig2V 2)

D2D
2

16
δ(· · ·)

+
D

2
D2

16
(4ig2V 2)

Λ∗D
2

−4
δ(· · ·)











(23)

where δ(· · ·) stands for δ(4)(θ − θ′) which should be evaluated at θ = θ′ after the action of

5



the spinor derivatives. Similarly, the first four diagrams (21) yield

〈XY 〉1+2+3+4 = −

∫

d4k

(2π)4

(

i

k2 − |Λ|2 + i0

)3

×

×

































Λ∗D
2

−4
(−2igV )

D2D
2

16
(−2igV )

D2D
2

16
δ(· · ·)

+
D

2
D2

16
(+2igV )

D
2
D2

16
(+2igV )

Λ∗D
2

4
δ(· · ·)

+
D

2
D2

16
(+2igV )

Λ∗D
2

−4
(−2igV )

D2D
2

16
δ(· · ·)

+
Λ∗D

2

−4
(−2igV )

ΛD2

−4
(+2igV )

Λ∗D
2

−4
δ(· · ·)

































.

(24)

Combining all six diagrams and factoring out the denominators and common numerator

factors, we obtain

〈XY 〉 =
ig2Λ∗

256

∫

d4k

(2π)4

(

1

k2 − |Λ|2 + i0

)3

× Fδ(· · ·) (25)

where

F = D
2
V D2D

2
V D2D

2
+ D

2
D2V D

2
D2V D

2
− D

2
D2V D

2
V D2D

2

− 16|Λ|2 ×D
2
V D2V D

2
− 8(k2 − |Λ|2)×

(

D
2
V 2D2D

2
+ D

2
D2V 2D

2)
.

(26)

Now let’s simplify this formula. The three terms on the top line here can be combined

together as

D
2
[D2, V ]D

2
[D2, V ]D

2
+ D

2
V ×D2D

2
D2 × V D

2
(27)

where in the second term we may simplify D2D
2
D2 = 16k2 ×D2. Consequently,

F = D
2
[D2, V ]D

2
[D2, V ]D

2
+ 16(k2 − |Λ|2)×D

2
V D2V D

2

− 8(k2 − |Λ|2)×
(

D
2
V 2D2D

2
+ D

2
D2V 2D

2)

= D
2
[D2, V ]D

2
[D2, V ]D

2
− 8(k2 − |Λ|2)×D

2
[[D2, V ], V ]D

2
.

(28)
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Note that both terms on the bottom line here involve the commutators

[D2, V ] = 2(DαV )Dα + (D2V ),

[[D2, V ], V ] = 2(DαV )(DαV ).
(29)

These commutators make some of the Dα operators act on the vector field V instead of the

δ(· · ·) to the right of F . Consequently, in the second term in (28)

D
2
[[D2, V ], V ]D

2
δ(· · ·) = 2D

2
(DαV )(DαV )D

2
δ(· · ·) = 0 (30)

because none of the Dα acts on the δ(· · ·). As to the first term in (28), we need two D

operators to act on the δ(· · ·), hence

D
2
[D2, V ]D

2
[D2, V ]D

2
δ(· · ·) = 4D

2
(DαV )DαD

2
(DβV )DβD

2
δ(· · ·) + 0

= −4D
2
(DαV )D

2
(DβV )×DαDβD

2
δ(· · ·) + 0

= −4(D
2
DαV )× (D

2
DβV )×DαDβD

2
δ(· · ·) + 0

= −64Wα ×W β × 8ǫαβ

= −512WαWα .

(31)

To summarize,

Fδ(· · ·) = −512WαWα . (32)

The rest of the formula (25) is a straightforward integral

I = +
ig2Λ∗

256

∫

d4k

(2π)4

(

1

k2 − |Λ|2 + i0

)3

= +
g2Λ∗

256

∫

d4kE
(2π)4

1

(k2E + |Λ|2)3

= +
g2Λ∗

256
×

1

16π2

∞
∫

0

dk2E
k2E

(k2E + |Λ|2)3

= +
g2Λ∗

256
×

1

32π2|Λ|2

=
g2

213π2
×

1

Λ
.

(33)
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Combining this result with eq. (32) immediately gives us

〈XY 〉 (2 vectors) =
−g2

16π2Λ
WαWα . (34)

To complete the proof of eq. (18) we need to show that there are no multi-vector contri-

butions to the 〈XY 〉. Or rather, that all amplitudes (20) involving n = 4, 6, . . . vectors are

smaller than O(1/Λ). Although the number of diagrams increases rather rapidly with n —

for example, for n = 4 there are 54 one-loop diagrams — one can prove by induction that

all the vector fields appear in the analogue of F only in commutators [D2, V ] or multiple

commutators. Consequently, although there are up to 2n Dα operators in the loop, at least

n of them act on the vector fields while two more have to act on the δ(· · ·). This leaves

us no more then n − 2 D’s to anticommute with the D’s and produce powers of the loop

momentum in the numerator. Altogether, the loop integral looks like

In =

∫

d4kE
(2π)4

Λ∗Nn(k
2
E, |Λ|

2)

(k2E + |Λ|2)n+1
(35)

where Nn in the numerator is some polynomial of degree (n − 2)/2. By the power-of-

momentum counting,

In ∼ Λ∗ × |Λ|4+(n−2)−2(n+1) =
Λ∗

|Λ|n

⇐
=

for Λ → ∞, Λ× In −→

{

finite for n = 2,

0 for n > 2.

(36)

In other words, all the multi-vector terms eq. (18) are sub-leading in the Λ → ∞ limit and

only the two-vector term contributes to the Konishi anomaly

−1
4D

2
J reg
ax = +2Λ 〈XY 〉 −−−→

Λ→∞
−
g2

8π2
WαWα . (37)
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Similar arguments show that

〈

XY
〉

(2 vectors) =
−g2

16π2Λ∗
W α̇W

α̇
. (38)

while the multi-vector contributions to eq. (19) carry sub-leading powers of 1/|Λ|, hence

−1
4D

2J reg
ax = +2Λ∗

〈

XY
〉

−−−→
Λ→∞

−
g2

8π2
W α̇W

α̇
. (39)

The details are left as an exercise to the students.
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