
Seiberg Witten Theory:

Monodromies, Confinement, and Elliptic Curves

Preliminaries:

Let me change the EM units of charges compared to the previous lectures: Classically

e ≡ e[U(1)] =
g[SU(2)]

2
, (1)

so that the massive W± vector particles have electric charges Q = ±2e, while the quarks

— when we add them to the theory — would have Q = ±e. Consequently, all the electric

electric charges become integer in units of e. At the same time, the magnetic charges have

integer values in units of 4π
g = 2π

e . Therefore, I am redefining

τ ≡ τ [U(1)] = 2× τ [SU(2)] =
2πi

e2
+

Θ1 = 2Θ2

2π
= 2πif [U(1)] (2)

so that the electric and the magnetic charges of any particle can be combined to the central

charge

Z ≡ Q + iµ = e×
(
n+mτ) for integer n and m. (3)

In new notations, the EM Hamiltonian density has form

H = 1
2

∣∣∣ ~Ecan + i ~Bcan

∣∣∣
2

=
|~C + τ ~B|2
4π Im τ

, (4)

while the S dualities act according to

(
n′

−m′

)
=

(
a b

c d

)
×
(

n

−m

)
,

(
~C′

− ~B′

)
=

(
a b

c d

)
×
(

~C
− ~B

)
,

(5)

τ ′ =
aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z).

In a quantum SQED-like theory which includes the EM as well as some charged fields,

τ = 2πifW is a Wilsonian holomorphic gauge coupling. However, in the low-energy theory
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which comprises just the EM and the moduli fields while all the charged fields are integrated

out, τ becomes the physical gauge coupling in the low-energy Hamiltonian (4). To assure the

positive photon energies, the imaginary part Im τ(U) must stay strictly positive for all values

of the modulus U . Fortunately, this positivity condition is preserved by all the S dualities (5):

Im τ ′ =
Im τ

|cτ + d|2 =⇒ if Im τ > 0 then Im τ ′ > 0 for all τ ′ ∼= τ modulo SL(2,Z).

(6)

At large U ≫ Λ2, the SU(2) is Higgsed down to the U(1) at energies where the SU(2)

coupling is weak, so we may use perturbation theory for the τ(U); in present notations, this

gives us

τ(U)
pert
=

2i

2π
log

U2

Λ4
+ const. (7)

This one-loop formula is true to all loop orders, but does not include the non-perturbative

effects due to instantons of the broken SU(2). As I explained last lecture, including the

instantonic corrections gives us

τ(U) =
2i

2π
log

U2

Λ4
+

∞∑

n=0

Cn ×
(
Λ4

U2

)n

(8)

where the constant coefficients Cn follows from the pre-exponential factors of the n–instanton

effects. As a power series in Λ4/U2, the
∑

n here has a finite radius of convergence, which

is related to singularities of τ(U) for finite U ∼ Λ2. Indeed, I argued last lecture that τ(U)

must have such singularities in order to keep its imaginary part strictly positive for all U .

Moreover, the singularities of τ(U) must be branching points rather than poses or essential

singularities, and different branches must be related to each other by S dualities.

Singularity Types

Physically, singularities of the τ(U) function follow from some charged particles which

are massive for generic values of U but become massive at some point U0 in the U plane.

Let us work out the details of such singularities for different types of charged particles.

As a first example, consider a pair of electrically charged scalar supermultiplets E± with

charges Q = ±ne which become massless for U = U0. For small U −U0, the E
± are massive
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but very light, mE ≪ Λ, so let’s consider an SQED-like effective theory which comprises the

light E± and the massless EM and U superfields, but does not include the heavier degrees

of freedom (whatever they may be). This effective theory has Wilsonian Lagrangian

Leff
W =

∫
d4θ

(
Ku(U, U) + Z+(U, U)× E

+
e+2VE+ + Z−(U, U)× E

−
e−2VE− + · · ·

)

+

∫
d2θ

(
τ̂(U)

4πi
×WαWα + mE(U)× E+E−

)
+ H. c.

(9)

where

mE(U) = λ(U − U0) + O
(
(U − U0)

2
)

(10)

and all the Wilsonian couplings — including the gauge coupling τ̂(U) — are smooth functions

of U in the vicinity of U0.

The singularity at U0 obtains only after integrating out the E± fields. Such integration

out is OK for U 6≈ U0 where the E± fields are heavy enough, but for U = U0 the E± fields

are just as massless as the photon, so integrating them out from the IR theory does not make

sense. But formally the integration-out is well defined for any non-zero mE(U), even it it’s

very small, and that’s how we get an effective IR theory of just the EM and U superfields

and nothing else — but with singular effective couplings at U = U0.

In particular, the holomorphic gauge coupling of the E±–less theory is given by

8π2f = 8π2f̂W + 2n2 × log
UV cutoff

mE(U)
, (11)

or in terms of τ(U),

τ(U) = τ̂ (U) +
in2

2π
log

UV cutoff

mE(U)

=
in2

2π
log

1

U − U0
+ a smooth function of U.

(12)

Note that for small U − U0, the logarithmic term here has a positive imaginary part, hence

for U → U0 , Im τ(U) → +∞, (13)

so this is a good example of a singular τ(U) with a positive imaginary part.

3



Next, consider un-Higgsing of the SU(2), which classically happens at U = 0. Suppose

in the quantum theory the massive vector supermultiplets W± with electric charges ±2e

become massless at some point U0, thus

MW (U) ∝ |U − U0|p (14)

for some power p > 0. Again, in the vicinity of the U0 the effective theory which includes

the vector superfields W± (and also the similarly charged chiral superfields eaten by the

HIggs mechanism) has smooth couplings, but integrating out the charged fields leads to a

singularity. This time, the charged fields give a negative net contribution to the beta-function

coefficient b = −3× 2 + 2 = −4, so integrating them out leads to

2π2f [U(1)] = 8π2f̂W [SU(2)] − 4 log
UV cutoff

mW (U)
, (15)

or in terms of τ = 2πif [U(1)],

τ(U) = 2τ̂(U) − 8i

2π
log

UV cutoff

mW (U)
= −8pi

2π
×log

1

U − U0
+ a smooth function of U. (16)

Similarly, suppose some composite vector supermultiplets with electric charges ±ne become

massless at U = U0. In this case, the τ(U) of the effective theory which does not include

those vector superfields has a singularity

τ(U) = −2pn2i

2π
× log

1

U − U0
+ a smooth function of U. (17)

At first blush, this formula looks similar to eq. (12) for the singularity due to massless

charged chiral superfields, but there is one crucial difference — the sign of the coefficient of

the logarithmic term. In the vector case, the imaginary part of the log term has a negative

sign for small U − U0, hence

for U → U0 , Im τ(U) → −∞. (18)

Therefore, regardless of the smooth term in eq. (17), for small enough U − U0 the overall

Im τ(U) becomes negative. Since negative Im τ(U) are not allowed, this means that in the

quantum Seiberg–Witten theory there is no un-Higgsing of SU(2) for any U . More generally,

there are no massless charged vector superfields for any U .
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Now suppose the particles which become massless at U = U0 have magnetic charges

µ = ±m × (2π/e) instead of the electric charges. This example calls for the EM duality —

which turns the magnetic charges into dual electric charges Q = ±me while τ(U) turns into

τdual(U) = −1/τ . OOH, the supermultiplet type — scalar or vector — of the massless par-

ticles is un-affected by the EM duality, which leads us to eqs. (12) or (17) for the singularity

of the dial coupling. Thus, for U in the vicinity of the U0 we have

τdual(U) = smooth(U) +
m2i

2π
log

1

U − U0
(19)

in the chiral case, and

τdual(U) = smooth(U) − 2pm2i

2π
log

1

U − U0
(20)

in the vector case. Again, the main difference between the two cases is the sign of the

imaginary part of the dual coupling near the singularity: In the scalar Im τdual > 0 for

all U near the singularity, but in the vector case Im τdual turns negative for small enough

|U −U0|. But according to eq. (6), the requirement of Im τ(U) > 0 for all U is equivalent to

Im τdual(U) > 0 for all U , so the scalar case is OK but the vector case is ruled out. This, if

magnetic monopoles become massless at some U0, these monopoles must form scalar rather

than vector supermultiplets.

Finally, suppose some dyons with (magnetic,electric) charges ±(m,n) become massless

at U = U0. For any combination of charges (p, q) there is some S–duality that would make

them purely electric,

∃M ∈ SL(2,Z) such that M

(
n

m

)
=

(
r

0

)
, r = gcd(n,m). (21)

After this duality, we have equations similar to (19) and (20) for the dual coupling τdual(U),

the only difference from the purely magnetic case being the relation between the τdual and

τ . However, for any S–duality, the τdual(U) must have positive imaginary part for all U ,

and that’s consistent with the scalar supermultiplets becoming massless but not the vector

supermultiplets.
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The bottom line is, the particles becoming massless at special points of the moduli space

can have electric charges, or magnetic charges, or both, but they should form scalar rather

then vector multiplets of the N = 1 SUSY. Similarly, for the N = 2 SUSY, the particles

becoming massless at a special point should form hyper-multiplets rather then vector mul-

tiplets. But for the N = 4 SUSY the vector multiplets are OK because their masses do not

affect the gauge coupling τ .

Monodromies

The holomorphic coupling τ of the un-broken U(1) gauge symmetry is a multi-valued

function of the modulus U . As we move in the moduli space along a closed path enclosing

some singularity, the τ ′(U) at the end of the path may be different from the τ(U) we started

from at the same point U :

sing.

U

τ(U) τ ′(U)

τ ′(U) 6= τ(U). (22)

Instead, τ ′(U) should be equivalent to τ(U) modulo an S-duality,

τ ′(U) =
aτ(U) + b

cτ(U) + d
for some SL(2,Z) matrix M =

(
a b

c d

)
. (23)

This S-duality transform — which acts not only on the τ but also on all the electric and

magnetic charges of the U(1) theory — is called the monodromy of the path in question.

Note: the monodromy is a topological, or rather a homotopical property of a path — all

paths circling the same singularities the same numbers of times (and in the same order) will

have the same monodromy.

Electric example: Suppose at some point U0 in the moduli space, a pair of electrically

charged (Q = ±ne) chiral superfields E± becomes massless. In the vicinity of U0, eq. (12)

gives us

τ(U) = smooth(U) +
in2

2π
log

1

U − U0
= smooth(U) +

n2

2πi
log(U − U0). (24)

When we circle counterclockwise around the singularity U0, the logarithm log(U−U0) changes
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by 2πi, hence

τ(U) 7→ τ(U) + n2. (25)

This monodromy is described by the SL(2,Z) matrix

Mel(n) =

(
1 n2

0 1

)
, (26)

which acts not only on τ(U) but also on (electric,magnetic) charges (n′,−m′) of all the par-

ticles, massless or massive. Specifically, the purely electric charges (n′, 0) remain unchanged,

but the magnetic monopoles and dyons with m′ 6= 0 change their electric charges n′ by

−m′ × n2.

Magnetic example: Now suppose that a pair of magnetic monopoles with charges µ =

±m(2π/e) becomes massless for U = U0. In this case we have eq. (19) for the dual coupling

τdual(U), which yields monodromy

τdual(U) 7→ τdual(U) + m2. (27)

Translating this monodromy in terms of τ = −1/τdual, we have

−1

τ(U)
7→ −1

τ(U)
+ m2 =⇒ τ(U) 7→ τ(U)

−m2 × τ(U) + 1
, (28)

which corresponds to the monodromy matrix

Mmag(p) =

(
1 0

−m2 1

)
. (29)

This monodromy leaves the purely magnetic charges (0, m′) of other particles unaffected,

but the electrically charged particles change their magnetic charges by ∆m′ = +m2 × n′

when they circle the singularity.
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General dyons: Finally, suppose a pair of dyons with some generic (electric,magnetic)

charges ±(n,m) becomes massless at some point U0. The monodromy of a path enclosing

this point is

τdual(U) 7→ τdual(U) + r2, (30)

where r = gcd(n,m), while

τdual(U) =
aτ(U) + b

cτ(U) + d
(31)

for the same matrix

K =

(
a b

c d

)
∈ SL(2,Z) (32)

which turns the dyonic charges (n,−m) into purely electric,

K

(
n

−m

)
=

(
r

0

)
. (33)

Translating the monodromy (30) to the language of the original coupling τ(U) gives us the

monodromy matrix

M(n,m) = K−1 ×
(
1 r2

0 1

)
×K =

(
1 + r2cd r2d2

−r2c2 1− r2cd

)
. (34)

The second equality here uses the explicit form (32) of the duality matrix K. Note that only

two of K’s matrix elements are relevant in eq. (34), and we may easily find those elements

from the matrix equation (33). Specifically, we have

cn − dm = 0 =⇒ c =
m

r
, d =

n

r
, (35)

hence

M(n,m) =

(
1 + nm +n2

−m2 1− nm

)
(36)

A curious property of the monodromy matrices (26), (29), and (36) is that they all have

tr(M) = 2. This property is not preserved by matrix multiplication, so it does not restrict
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us to a subgroup of the SL(2,Z). Instead, it’s a characteristic feature of monodromies of

path inside which only a single type of (n,m) charges become massless. If a path encloses

multiple singularities with different types of massless charges, the monodromy of this path

generally has tr(M) 6= 2.

Group theory of monodromies.

Closed paths in the moduli space — considered modulo deformations which do not cross any

singularities — form the fundamental group of the moduli space. The monodromies provide

a map from this group into the S–duality group SL(2,Z), and this map preserves the group

law: The monodromy of a combined path P2P1 — which first follows one closed path P1 and

then another closed path P2 — is a matrix product

M(P2P1) = M(P2)×M(P1). (37)

For example, suppose one path circles a singularity at U1 and has monodromy M1 while

another path circles a different singularity U2 and has monodromy M2,

U1 U2

M1 M2

(38)

Then the combined path — which circles first U1 and then U2 —

U1 U2

=

U1 U2

M2M1

(39)

has monodromy M2M1.
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The small open circle in figures (38) and (39) denotes the reference point where all

closed loops begin and end. If we move this point, the monodromies may suffer a similarity

transform,

M(P ) 7→ U−1 ×M(P )× U (40)

for some common U ∈ SL(2,Z) for all paths P . For example, suppose we move down the

reference point on figure (39):

U1 U2

M2M1

U1 U2

M1M2

(41)

The new path also circles both singularities U1 and U2 but in the opposite order — first U2

then U1 — so its monodromy is M1M2 instead of M2M1. The monodromy matrices (36)

generally do not commute, so M1M2 6= M2M1, but the two matrix products are always

similar. Indeed, let U = M−1
2 , then

U−1(M1M2)U = M2M1M2M
−1
2 = M2M1 . (42)

Monodromies of the Seiberg–Witten model:

Earlier in class we saw that the Seiberg–Witten model has two singularities in the U–modulus

plane, at U1 = −Λ2 and U2 = +Λ2. There are no singularities at any other finite values of

U , but for U → ∞ we have

τ(U) =
2i

2π
log

U2

Λ4
+

∞∑

n=1

Cn

(
Λ4

U2

)n

(8)

As we circle the infinity — i.e., keep |U | fixed and large, |U | ≫ |Λ|2 and change the phase(U)

by +2π, the instanton terms in eq. (8) come back to themselves, but the logarithm in the one-
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loop term changes by +4πi, which leads to τ 7→ τ − 4. In terms of the SL(2,Z) monodromy

matrix, this means

M∞ = ±
(
1 −4

0 1

)
. (43)

Note that the overall sign of this matrix affects the electric and the magnetic charges of all

the particles, but it does not affect the coupling τ , that’s why we have left it open for a

moment.

To determine the sign, consider the Higgs VEV

〈Φa〉 =
(
0, 0,

√
U
)
. (44)

As the U modulus circles the ∞ once, this VEV changes sign — which is equivalent to a 180◦

isospin rotation that reverses the direction of the un-broken U(1) inside the SU(2). In terms

of this reversed U(1), the abelian gauge fields ~E and ~B change signs, and this requires all

the electric and magnetic charges to change their signs too. This charge reversal corresponds

to the ‘−’ sign in eq. (43), thus the correct monodromy matrix for circling the infinity is

M∞ =

(
−1 +4

0 −1

)
. (45)

Topologically, a path circling the ∞ — i.e., a very large counterclockwise circle — is

equivalent to the path (39) circling both singularities at U = ∓Λ2. Consequently, both path

should have the same monodromies,

M2 ×M1 = M∞ . (46)

This equation allows us to determine the electric and magnetic charges of the particles

that become massless at the singularities U1,2 = ∓Λ2. Using Occam’s razor we assume that

there is only one pair of massless charges ±(ni, mi) at each singularity Ui (i = 1, 2), so the

monodromies Mi have form (36),

Mi = M(ni, mi) =

(
1 +mini +n2i

−m2
i 1−mini

)
(47)

All we need to do is to plug these matrices into eq. (46) and solve for the charges (n1, m1)

and (n2, m2).
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Let me skip the algebra and simply state the result: All solutions have charges

m1 = m2 = 1, n2 = n1 + 2, any n1 ∈ Z. (48)

This looks like an infinite family of solutions, but all solutions with the same n1 mod 4 are

equivalent to each other by monodromies around the infinity. Indeed, the M∞ matrix (46)

(combined with the charge conjugation ±(n,m) 7→ ∓(n,m)) changes the electric charges

of dyons with m = 1 by 4 units, so applying it k times will change n1 to n′1 = n1 + 4k.

Consequently, there are at most 4 distinct solutions.

Moreover, in the quarkless Seiberg–Witten theory, all the electric charges must be mul-

tiples of the W+ charge 2e, or in terms of (n,m) charges, all the n’s must be even. This rule

restricts the EM duality group of the theory to the Γ(2) subgroup of SL(2,Z), which spans

matrices (
a b

c d

)
≡
(
1 0

0 1

)
(mod 2), (49)

in other words, even b and c but odd a and d. In terms of the solutions (48), we need even n1,

and hence either n1 = 0 while n2 = 2, or else n1 = −2 while n2 = 0 (modulo monodromies

around the infinity). Either way, this means massless magnetic monopoles (with no electric

charges) at one singularity and massless dyons (with n = ±2) at the other singularity. We

still has to choose which singularity has the monopoles, but that’s equivalent to choosing

which branch of
√
Λ4 is +Λ2 and which is −Λ2 — it’s a distinction without any physical

difference. The usual choice is to have massless monopoles at the U = +Λ2 and massless

dyons at the U = −Λ2, but that’s simply a convention.

Confinement in the Massive Theory

Thus far, we have focused on the massless theory with N = 2 SUSY and exactly degen-

erate moduli space of SUSY vacua. Now let’s break the extra SUSY (down to N = 1) by

giving the Φa superfields a small mass m,

Wtree =
m

2
ΦaΦa. (50)

Earlier in class we saw that this mass lifts the degeneracy of the moduli space and gives us

two discrete SUSY vacua with U = ±Λ2. But as long as m ≪ Λ, we may obtain the effective
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low-energy theory (for E ≪ |Λ|) by starting with the EFT of the massless theory for U near

±Λ2 and then perturbing it by the superpotential (50).

Let’s start with the EFT for U near +Λ2. This EFT comprises the U , the massless

magnetic monopoles M±, and the abelian vector superfield V , or rather its magnetic dual Ṽ .

The effective Wilsonian Lagrangian is

Lw =

∫
d4θ Kw +

∫
d2θ

(
τdualw (U)

8πi
W̃αW̃α + W (U,M±)

)
+ H.c. (51)

where

Kw = K̂w(U, Ū) + ZM

(
M+exp(+2Ṽ )M+ + M−exp(−2Ṽ )M−

)
+ · · · (52)

and

W = M+M− ×
(
λ(U − Λ2) + O

(
(U − Λ2)2

))
+

m

2
× U. (53)

Note that all of the Wilsonian couplings here — including the τdualw (U) and the Kähler metric

g
UŪ

= ∂2K̂w/∂U∂Ū — are smooth functions of the modulus U . The τdual and the Kähler

metric become singular only after we integrate out the monopole superfields M±.

The mass term (50) for the Φa fields becomes an O’Raifeartaigh term for the U modulus.

Thanks to the Yukawa coupling λ = O(1/Λ) of the U to the monopole superfields M±, this

O’Raifeartaigh term does not break SUSY; instead, it pushes the scalar components of M±

to non-zero values

〈
M+

〉
=
〈
M−

〉
=

√
−m

2λ
+ O(m2) = O(

√
mΛ) (54)

and fixes the modulus scalar at 〈U〉 = +Λ2. Consequently, we have a SUSY vacuum with a

mass gap, i.e. no massless particles. Indeed, from the dual vector Ṽ point of view, the M±

fields have electric charges ±edual, so their VEVs (54) cause the Higgs effect: The vector
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multiplet Ṽ and the chiral multiplet δM+ − δM− get masses

mv = 2edual
√
ZM × |〈M〉| = O(

√
mΛ). (55)

The remaining chiral multiplets δU and δM+ + δM− get comparable masses

ms =

√
2λ 〈M〉√
Z
M
g
UŪ

= O(
√
mΛ) (56)

from their Yukawa couplings to the VEVs (54).

The ordinary Higgs mechanism (involving electrically-charged scalar VEVs) is a relativis-

tic version of superconductivity. In a superconductor, some electrically-charged superfluid

short-circuits the static electric fields and screens the electric charges of all particles. It also

repels the magnetic fields in the Meissner effect or constricts them into thin flux tubes, and

that causes problems for magnetic monopoles. Indeed, if you put a monopole in the middle

of a bulk superconductor, the magnetic charge is not screened, so the magnetic field has

a fixed flux µ and it has to go somewhere. But instead of spreading out uniformly in all

directions, the magnetic field is forced into a flux tube of fixed diameter ∼ 1/mv.

SC (57)

At one end of the tube is the monopole which produces the magnetic flux. At the other end,

we need either another monopole with an opposite magnetic charges to soak up that flux, or

else the tube needs to reach the superconductor’s surface beyond which the magnetic field

can spread out. Since in the Higgs mechanism the whole space becomes superconducting,

the flux tube has to connect two monopoles with opposite charges.

14



Consider a pair of monopoles connected by a long flux tube. The tube has a finite tension

T =
Etube

Ltube

, (58)

so it likes to form a straight line, and then it pulls the monopoles towards each other with

a distance-independent force T . Consequently, instead of a Coulomb potential between the

two monopoles, at large distances we get a confining potential

r

V

V = T × r @ large
r

V = − µ2

4πr @ small r

(59)

Thus, in the electric superconductor, magnetic monopoles are confined: no matter how much

energy you give a monopole-antimonopole pair, you can never break it into two separate

particles.

Now consider a magnetic superconductor in which the superfluid is made of bosons with

magnetic rather then electric charges. Using the electric-magnetic duality as a mirror, we

immediately see that in a magnetic superconductor, the magnetic fields are short-circuited

while the electric fields are repelled in a Meissner-like effect or restricted to electric flux tubes.

Consequently, the magnetic charges are screened while the electric charges are confined.

Gerard ’t Hooft had argued back in the 1970-s that this is the origin of quark confinement

in QCD: The QCD vacuum should be some kind of a chromo-magnetic superconductor, so

the chromo-electric charges of the quarks become confined. Of course, the chromo-magnetic

monopoles in an un-broken SU(3) gauge theory are somewhat different from the ordinary

magnetic monopoles in U(1) or SU(2) broken to U(1), but that’s a technical issue. If you are

interested, it’s explained in chapter 5 of ’t Hooft’s lecture notes (arXiv:hep-th/0010225)

I’ve assigned in homeworks 9 and 11. The real problem is explaining why these monopoles

form a Bose–Einstein condensate (or some other kind of a superfluid).
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To this day, there is no rigorous proof of monopole condensation in QCD, but the Seiberg–

Witten theory provides a useful model how it could happen. Indeed, in the massive Seiberg–

Witten theory we have non-zero VEVs (54) of scalar fields M± with magnetic charges.

Those VEVs make the vacuum into a magnetic superconductor in which all electric charges

are confined. This includes the quarks (if we add them to the theory), the W± vector bosons,

or even the dyons. All isolated particles must have zero net electric charges; a net magnetic

charge is OK as it would screened by the monopole condensate.

Oblique confinement: The massive Seiberg–Witten theory has two vacua with 〈U〉 = ±Λ2.

Both vacua are confining, but while the 〈U〉 = +Λ2 vacuum confines the electric charges,

the 〈U〉 = −Λ2 vacuum confines the n − 2m combination of electric and magnetic charges;

such confinement is called oblique.

To see how this works, let’s recall that the massless theory with U = −Λ2 has massless

dyons D± with (electric,magnetic) charges ±(2, 1). Consequently, for small m ≪ Λ we have

an effective theory of U , D+, and D− chiral superfields and an abelian vector superfield Ṽ ;

the latter is dual to V but the duality here is not electric-magnetic as before but rather

electric-dyonic, thus

τdual =
−1

τ − 2
(60)

instead of −1/τ . The effective Wilsonian Lagrangian is similar to (51)–(53); in particular,

the superpotential is

W = D+D− ×
(
λ(U + Λ2) + O

(
(U + Λ2)2

))
+

m

2
× U. (61)

Thanks to the O’Raifeartaigh term, the dyon fields have non-zero VEVs

〈
D+
〉

=
〈
D−
〉

=

√
−m

2λ
+ O(m2) = O(

√
mΛ), (62)

the U modulus is fixed at 〈U〉 = −Λ2, and the theory has a mass gap due to (dual) Higgs

mechanism.

Any kind of a Higgs mechanism gives us a superconducting vacuum, but this time the su-

perfluid is made of dyons with charges ±(2, 1) rather then purely magnetic monopoles. This
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superfluid short-circuits a particular combination ~E+ c ~B of the electric and magnetic fields,

while all other combinations are restricted to flux tubes. Consequently, there is screening of

n = 2m combinations of electric and magnetic charges, but all other combinations of electric

and magnetic charges are confined.

The purely-electric charges of quarks and W± ‘gluons’ do not feel the difference between

the ‘straight’ and the ‘oblique’ confinements. But for magnetically charged particles, the

difference become important: for the straight confinement, all isolated particles must have

zero net electric charge, regardless of the magnetic charge, while for the oblique confinement,

the net electric charge of an isolated particle should be equal to its net magnetic charge. On

the charge lattice

n

m

(63)

the isolated particles lie on the red vertical line for the straight confinement versus the green

diagonal line for the oblique confinement.

Elliptic Curves

Let’s go back to the massless theory and consider the holomorphic gauge coupling τ as a

function of the modulus U . Now that we know all the singularities of the holomorphic func-

tion τ(U), we would like to write it down in an analytic form. Unfortunately, this is rather

difficult because this function is not only multi-valued but has non-abelian monodromies,

which require a very complicated Riemann surface with non-commuting branch cuts. To

avoid this problem, we are going to construct an elliptic curve which uniquely determines

τ modulo an SL(2,Z) S–duality, and then we are going to write down a formula for that

elliptic curve as a function of the modulus U .
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The name ‘elliptic curve’ is rather misleading to non-mathematicians. It is not an ellipse.

It is not even a curve in the usual sense of the word but a Riemann surface of two real

dimensions; it’s a complex curve because it can be parametrized by one complex coordinate.

Specifically, the elliptic curve is the Riemann surface of an elliptic integral

∫
dx Polynomial(x)√

(x− x1)(x− x2)(x− x3)(x− x4)
(64)

— integrals like these are used for calculating the lengths of elliptic arcs, hence the name.

And that’s the only connection between the ellipses and the elliptic curves.

The integrand of the elliptic integral (64) has two square-root branch cuts,

x

x1 x3

x2 x4

(65)

so its Riemann surface has two sheets. Introducing another coordinate y to distinguish

between the sheets, we can describe the elliptic curve as a complex curve in C2 defined by

the polynomial equation

y2 = P4(x) ≡ (x− x1)(x− x2)(x− x3)(x− x4). (66)

And if we want to describe a whole family of elliptic curves, we simply make the roots

x1(U), . . . , x4(U) into functions of the modulus U . However, we should remember that two

seemingly different equations

y2 =

4∏

i=1

(x− xi) and y′2 =

4∏

i=1

(x′ − x′i) (67)

may describe the same elliptic curve in different coordinates related by an SL(2,C) conformal
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symmetry of the complex sphere,

x′i =
αxi + β

γxi + δ
, x′ =

αx+ β

γx+ δ
, y′ =

y

(γx+ δ)2
×

4∏

i=1

(γxi + δ)−1/2. (68)

Using such symmetries we may fix 3 out of four roots of the curve, for example x2 ≡ 0,

x3 ≡ 1, x4 ≡ ∞, and only the x1 varies from curve to curve. However, for our purposes

it’s convenient to fix only one root, x4 ≡ ∞, but let the other three roots vary with the

modulus U , thus

y2 = (x− x1(U))(x− x2(U))(x− x3(U)) = x3 + a(U)× x2 + b(U)× x + c(U). (69)

Topologically, the elliptic curve is a torus. Indeed, each sheet of the Riemann surface is

a sphere, while the two branch cuts provide two handles connecting the two spheres.

(70)

Despite its funny appearance, this torus is conformally flat, so it has a flat complex coordi-

nate z — which has a holomorphic but very complicated relation to x and y — with constant

metric ds2 = const×dz dz∗. This flat coordinate spans a parallelogram whose opposite sides
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are glued together to make a torus,

bb

a

a

(71)

Equivalently, we may treat z as a multi-valued coordinate that spans the whole complex

plane, but whose values are taken modulo a discrete lattice,

z ≡ z + na + mb ∀n,m ∈ Z. (72)

In this language, the parallelogram (71) occupies a unit cell of the lattice with complex

periods a and b.

a

b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

b b b b b b

(73)

Note that defining z as the flat coordinate of the torus determines it only up to z → cz + d

for some complex constants c and d. Consequently, we are free to multiply the two periods

of the lattice by the same factor, a → ca, b → cb. On the other hand, the ratio

τ =
b

a
(74)

which controls the aspect ratio and the skew angle of the torus is completely determined by

the complex structure of the variable z and cannot be changed without a non-holomorphic

redefinition such as z → αz + γz∗. Thus, as long as z is holomorphically related to the

complex coordinates x and y of the elliptic curve (69), the curve’s geometry controls the

period ratio (74) of the torus.
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Or rather, the complex structure of the elliptic curve determines the complex structure

of the lattice (73), but we are free to choose any unit cell we like to define the periods a and

b. Here are a few examples:

a

b

b
′

a
′

a
′′

b
′′

a
′′′

b
′′′

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

(75)

When you glue together the opposite sides of any such cell, we always get exactly the same

torus geometry, but different cells provide different homology bases for the circles wrapping

the torus. Or in terms of the lattice, different unit cells correspond to different bases for

the same lattice. And of course, all such bases are related to each other by the SL(2,Z)

symmetries,
(
b′

a′

)
=

(
α β

γ δ

)(
b

a

)
(76)

so the period ratios for different bases are related according to

τ ′ =
ατ + β

γτ + δ
,

(
α β

γ δ

)
∈ SL(2,Z). (77)

The bottom line is, the complex structure of a complex curve determines the period ratio τ

of a complex lattice modulo SL(2,Z).

At this point, I can finally explain why did I introduce the elliptic curves in the first

place. The holomorphic gauge coupling τ is the period ratio of the lattice of electric and

magnetic charges

Q + iµ = n× e + m× τe . (78)

The electric-magnetic duality and its SL(2,Z) cousins change the basis of this lattice, but
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they don’t change the lattice itself. To encode τ(U) modulo SL(2,Z), we need to specify

how the charge lattice depends on U without fixating on a particular pair of periods a and

b. Equivalently, we want to specify how the complex structure of a torus depends on U

without picking a particular flat coordinate on the torus, and we may do just that in terms

of the elliptic curve family (69).

To make this approach practical, we need to do to things: (1) Learn how to trans-

late between τ modulo SL(2,Z) and the parameters of the elliptic curve, and (2) find out

which family of the elliptic curves describes the Seiberg–Witten model. Let’s start with the

translation problem.

Getting τ from an elliptic curve:

We can write the two periods of the torus as contour integrals

a =

∮

A

dz b =

∮

B

dz (79)

over the minor and major circles of the torus:

A

B

(80)

In terms of the x coordinate of the elliptic surface, these cycles become contours surrounding
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different branch cuts,

A
x1

x2

x3
B

x1

x2

x3

(81)

What about the differential dz? Although the z coordinate of the torus is multivalued, the

differential dz is single-valued, so it must translate into a single-valued differential of the

elliptic curve, hence

dz =
dx

y
× f(x) (82)

where f is a single-valued function of x. Moreover, f(x) may not have any singularities at

finite x’s — otherwise, the residue of that singularity would produce an extra ambiguity of

z besides the lattice na+mb. Likewise, a double loop around x = ∞ (this loop is closed on

the curve) also should not have a residue, which requires

x× f(x)

y
→ 0 for x → ∞. (83)

Since y ∼ x3/2 for large x, this limits the growth of |f(x)| with |x| to be slower then
√

|x|.
For a holomorphic nowhere-singular function, this limit implies f = const, so without loss

of generality we may take f = 1 and hence

dz =
dx

y
. (84)

Consequently, we may obtain τ from an elliptic curve as a ratio of two contour integrals,

τ =

∮

B

dx

y

/ ∮

A

dx

y
. (85)
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Singularities:

When the U modulus of the Seiberg–Witten model approach the singularity at ∞, the gauge

coupling becomes weak and Im τ → +∞, cf. eq. (8). When U approaches a finite singularity

at ±Λ2, the dual gauge coupling becomes weak and Im τdual → +∞, cf. eq. (19). Either

way, such a τ describes a long but skinny torus like a bicycle tire, and at the singularity

itself the torus becomes infinitely long but infinitely thin.

In the elliptic curve language, singular tori correspond to degenerate roots x1,2,3. Indeed,

consider what happens when x1 = x2 6= x3 and

dx

y
=

dx

(x− x12)
√
x− x3

(86)

The B contour normally encloses the x2 but not the x1, so when those roots coincide, the

contour has to go right through the pole of (86) at x = x12. This makes the integral diverge

and the b period of the torus becomes infinite. On the other hand, the A contour does not

go through the pole at x12 but circles it, so the integral — i.e., the a period of the torus —

remains finite. Consequently, τ = b/a is infinite and the torus indeed degenerates.

Now consider an almost-degenerate curve with two roots that are very close to each

other but not exactly equal. Without loss of generality, let us take x1 = 0, x2 = ǫ ≪ 1, and

x3 = 1. For these roots, we can take the A cycle to be a circle of radius |ǫ| ≪ 1 with a center

between x1 and x2. Along this circle we may approximate x− x3 ≈ −1, hence

y ≈ i
√

(x− x1)(x− x2), (87)

and

a =

∮

A

dx

y
≈ −i

∮
dx√

(x− x1)(x− x2)
= 2π. (88)

The B cycle surrounds the long branch cut of
√

(x− x2)(x− x3), so we may convert it into

a definite integral along one side of the branch cut,

b =

∮

B

dx√
(x− x1)(x− x2)(x− x3)

= 2i

x3∫

x2

dx√
(x− x1)(x− x2)(x3 − x)

(89)

For x1 = 0, x2 = ǫ ≪ 1 and x3 = 1 we may split the integration range into two pieces,

from x2 = ǫ to some C ≫ ǫ — but C ≪ 1 — and from C to x3 = 1. In the first piece we
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approximate 1− x ≈ 1 for |x| ≪ 1, hence

2i

C∫

ǫ

dx√
x(x− ǫ)(1− x)

≈ 2i

C∫

ǫ

dx√
x(x− ǫ)

= 2i ar cosh(
√

C/ǫ) = 2i log
4C

ǫ
+ O(ǫ/C).

(90)

In the second piece we have |x| ≥ |C| ≫ |ǫ|, which allows us to approximate x− ǫ ≈ x and

consequently

2i

1∫

C

dx√
x(x− ǫ)(1− x)

≈ 2i

1∫

C

dx

x
√
1− x

= 2i log
1 +

√
1− C

1−
√
1− C

= 2i log
4

C
+ O(C). (91)

Altogether,

b ≈ 2i log
16

ǫ
(92)

and

τ ≈ 2i

2π
log

16(x3 − x1)

x2 − x1
. (93)

More generally, when any two roots are much closer to each other than to the third root,

we have

τ or some τdual ≈ 2i

2π
log

16×∆xlarge
∆xsmall

. (94)

Seiberg–Witten Curve

Now let’s compare eq. (94) for a near-degenerate elliptic curve with the known singularities

of the Seiberg–Witten model. For U → ∞ we have a weakly-coupled singularity

τ(U) =
2i

2π
log

U2

Λ4
+ smooth(U); (95)

according to eq. (94) this calls for a curve with

∆xlarge
∆xsmall

∝ U2

Λ4
for U → ∞. (96)
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We also have strongly-coupled singularities for U → ±Λ2 where

τdual(U) =
i

2π
log

Λ2

U ∓ Λ2
+ smooth(U); (97)

according to eq. (94) this calls for

∆xlarge
∆xsmall

∝
√

Λ2

U ∓ Λ2
∝
√

Λ4

U2 − Λ4
for U → ±Λ2. (98)

At all other values of the modulus U the gauge coupling is non-singular, the three roots

x1,2,3 of the elliptic curve should stay non-degenerate and finite. All we need to do now is

to find the holomorphic x1(U), x2(U), and x3(U) that satisfy these conditions. Fortunately,

there is simple solution

x1 = 0, x2,3 = U ∓
√

U2 − Λ4 (99)

which leads to the Seiberg–Witten curve

y2 = x3 − 2Ux2 + Λ4x. (100)

Indeed, for U → ∞

x1 = 0, x2 ≈
Λ4

2U
, x3 ≈ 2U =⇒ x3 − x2

x2 − x1
≈ Λ4

4U2
, (101)

as required by (96), while for U → ±Λ2

x3 − x1
x3 − x2

≈ Λ4/4

U2 − Λ4
(102)

as required by (98).
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Curiously, the curve (100) has a very simple instanton expansion which stops at the

one-instanton level,

y2 = x2(x− 2U) + Λ4 × x + 0. (103)

The gauge coupling itself is affected by all orders of the instanton expansion, but somehow

the entire series

τ(U) =
2i

2π
log

U2

Λ4
+

∞∑

n=1

Cn

(
Λ4

U2

)n

(8)

can be summarized by a simple one-instanton formula (103). Similar simplifications happen

in many other SUSY gauge theories with abelian Coulomb phases, including theories with

multiple U(1) factors and matrices of gauge couplings. Somehow, when all the couplings are

encoded in a hyper-elliptic curve, the curve has only classical and one-instanton terms while

the couplings themselves have horribly complicated instanton expansions. I don’t know why

the curves are so simple, but I know they are.

Monodromies of the Seiberg–Witten Curve: The Seiberg–Witten curve is actually a

family of elliptic curves parametrized by U . When U moves around a singularity, the roots

x1,2,3 circle each other or become permuted. Consequently, we get back to exactly the same

torus but with a different basis of the A and B cycles,

(
B′

A′

)
=

(
α β

γ δ

)
×
(
B

A

)
=⇒ τ ′ =

b

a′
=

ατ + β

γτ + δ
for some

(
α β

γ δ

)
∈ SL(2,Z).

(104)

These monodromies can be obtained directly from motion of the roots x1,2,3(U) — we do

not need to perform any integrals, although sometimes it helps to write them down — and

that’s how one verifies that the SW curve correctly describes the physics of the problem.

Let’s start with the monopole point U = +Λ2. In the vicinity of this point, the A and

B cycles of the SW curve (100) look like

1 2 3

A B

(105)
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When U circles around the singularity, the x2 and x3 roots trade places. Indeed, let

U = +Λ2 + δ × eiφ, δ ≪ Λ2 =⇒ x2,3 = +Λ2 ∓ Λ
√
2δ × eiφ/2 + O(δ). (106)

As φ goes from zero to 2π, U moves in counterclockwise circle around +Λ2 while x2 and x3

move through halves of a circle — which makes them trade places with each other

U x3x2 (107)

This does not change the B cycle, which surrounds both x2 and x3, hence

b =

∮

B

dx

y
→ same b. (108)

On the other hand, the A cycle which used to surround a branch cut from x1 = 0 to x2 now

surrounds a different cut from x1 to what used to be x3. Therefore,

a =

∮

A

dx√
(x− x1)(x− x2)(x− x3)

= 2

x2∫

x1

dx√
(x− x1)(x− x2)(x− x3)

−→

−→ a′ = 2

x3∫

x1

dx√
(x− x1)(x− x2)(x− x3)

= 2

x2∫

x1

dx√
(x− x1)(x− x2)(x− x3)

+ 2

x3∫

x2

dx√
(x− x1)(x− x2)(x− x3)

= a − b.

(109)

Altogether, the monodromy around the singularity at U = +Λ2 amounts to

a′ = a− b, b′ = b, τ ′ =
b′

a′
=

τ

−τ + 1
=⇒ M(+Λ2) =

(
1 0

−1 1

)
(110)

— precisely as in eq. (29) for the monodromy around a point where magnetic monopoles of

charges m = ±1 become massless.
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At the dyon point U = −Λ2 we have a similar situation — the monodromy interchanges

the roots x2 ↔ x3 — but the cycle surrounding these two roots is B+2A rather than B due

to analytic continuation through a branch cut,

123

AB+2A

(111)

Consequently, the monodromy around the dyon point is

b′ + 2a′ = b + 2a, a′ = a − (b+ 2a) = −a − b, =⇒ b′ = 4a + 3b,

τ ′ =
3τ + 4

−τ − 1
, M(−Λ2) =

(
3 4

−1 −1

)
(112)

— in perfect agreement with eq. (36) for a pair of massless dyons with charges (n,m) =

±(2, 1).

Finally, consider the monodromy around the infinity. In the U → ∞ limits the x and y

coordinates of the SW curve become inconvenient because of the double root collision

x2 ≈ Λ4

2U
→ 0 = x1 while x3 ≈ 2U → ∞ = x4 . (113)

To avoid this problem, let us rescale the coordinates according to

x → x̃ =
x

U
, y → ỹ =

y

U3/2
, =⇒ ỹ2 = x̃3 − 2x̃2 +

Λ4

U2
× x̃ (114)

which moves the roots to

x̃1 = 0, x̃2 ≈ Λ4

2U2
, x̃3 ≈ 2, x̃4 = ∞. (115)

The A and B cycles around these roots are

321

BA

(116)

When U circles the ∞ clockwise, the roots x1, x3, x4 stay in place, while the x2 circles zero —
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and hence the x1 two times in the clockwise direction. This is equivalent to −4 consecutive

permutations x1 ↔ x2, which leads to monodromy

A′ = A while B′ = B − 4A. (117)

However, the coordinate change (114) rescales the differential

dx

y
→ dx̃

ỹ
= U−1/2 × dx

y
, (118)

and when U circles ∞, the U−1/2 factor changes sign. Consequently, the contour integrals

a =

∮

A

dx

y
and b =

∮

B

dx

y
(119)

pick an extra minus sign under monodromy compared to the cycles A and B themselves,

thus

a′ = −a, b′ = −b + 4a =⇒ M(∞) =

(
−1 +4

0 −1

)
(120)

— in perfect agreement with eq. (45).

This completes our verification of the SW curve (100) for the quarkless SU(2) theory.

Adding Quarks

Finally, let’s add quarks to the SW theory. Specifically, consider N = 2 supersymmetric

QCD with 2 colors and one flavor. In N = 1 language, this is the SU(2) gauge theory with

two doublets Qi and Q̃i and one triplet Φa of chiral superfields. The tree-level superpotential

is

Wtree = Φa × Q̃τaQ + mQ̃Q. (121)

In the classical vacua of this theory the squarks Q and Q̃ have zero VEVs while Φ has the

same types of VEVs as in the quarkless theory, 〈Φa〉 = (0, 0,
√
U) (modulo gauge symmetry).

For generic values of the modulus U the SU(2) is Higgsed down to U(1) while the quarks

have masses m ±
√
U 6= 0. The only massless particles are the photon, the modulus scalar

U , and their N = 1 superpartners — which together comprise a massless N = 2 vector

multiplet. But at the special point U = m2, one quark and one antiquark become massless

— either Q1 and Q̃1, or Q
2 and Q̃2, but not both.
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Now consider the quantum theory. For m ≫ Λ the heavy quarks have perturbatively

weak couplings, so the low-energy limit of this theory is quite similar to the quarkless SW

model with Λ4
eff = m × Λ3. In particular, τ(U) has similar singularities at U = ±

√
mΛ3

due to massless magnetic monopoles with m = ±1 or dyons with (n,m) = ±(2, 1). The

monodromies around these points are precisely as in eq. (36),

M
(
+
√
mΛ3

)
=

(
1 0

−1 1

)
, M

(
−
√
mΛ3

)
=

(
3 4

−1 −1

)
. (122)

However, for |U | > O(m2) the quarks become important. Consequently, the monodromy

around U = ∞ is different due to a different beta-function coefficient, b = −6 + 2 + 1 = −3

instead of b = −3, hence

M(∞) =

(
−1 +3

0 −1

)
. (123)

More importantly, there is an extra singularity at U = m2 due to massless quarks with

purely electric charges n = ±1. The monodromy around this point is

M(m2) =

(
1 1

0 1

)
. (124)

Let me give you without proof the Seiberg–Witten curve with the requisite singularities

and monodromies:

y2 = x3 − 2U × x2 + mΛ2 × x − 1
8Λ

6. (125)

I am not going to check the monodromies, but let me tell you how to find the singularities.

At finite U , the singularities follow from degeneration of the cubic polynomial on the RHS of

(125). Instead, of calculating the roots directly and checking for coincidences, let calculate

the discriminant

∆ = (x1 − x2)
2(x1 − x3)

2(x2 − x3)
2

= 4b3 + 27c2 − 18abc − a2b2 + 4a3c

= 4Λ6 ×
(
U3 − m2 × U2 − 9

8mΛ3 × U + m3Λ3 − 27
64Λ

6
)
.

(126)

As a function of U , the discriminant is a cubic polynomial. It generally vanishes at 3 points

U1,2,3 — which physically correspond to points where monopoles, dyons, or quarks become

31



massless. For m ≫ Λ, these 3 points are

U1,2 ≈ ±
√
mΛ3 , U3 ≈ m2 (127)

as expected from the perturbative treatment of the quarks. However, all three points suffer

from quantum corrections which become large for m ∼ Λ.

In particular, for m = 3
4Λ, the discriminant ∆(U) has a double zero at U = 3

4Λ
2. At this

Argyres–Douglas point, all 3 finite roots of the SW curve (125) become degenerate:

x1 = x2 = x3 = 1
2
Λ2. (128)

Physically, this corresponds to all three types of particles — the quarks with (n,m) = ±(1, 0),

the monopoles with (n,m) = ±(0, 1), and the dyons with (n,m) = ±(2, 1) — becoming

massless at the same time! Therefore, the low-energy effective theory is not IR free but

rather flows to a strongly coupled superconformal field theory.
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