
SQED Two–Photon Amplitude at the One–Loop Level

Consider the two-vector-superfields amplitude in SQED,

iM =
V1 V2

(1)

At the one-loop level, this amplitude comes from 7 diagrams

A A

1

B B

2

A B

3

B A

4

A5 B6

δ3
7

(2)

where the last diagram contains the δ3 counterterm that cancels the UV divergences of the

other six diagrams.

Seven diagrams sounds like a lot of work, but fortunately the loop diagrams come in pairs
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related by the charge conjugation symmetry A ↔ B, V → −V . Thanks to this symmetry,

M1 = M2 , M3 = M4 , M5 = M6 , (3)

so we have only 3 independent loop diagrams to evaluate.

Let’s start with the diagrams #5 and #6. The loop in each of these diagrams comprises

a single propagator belonging to a chiral superfield, hence 4 spinor derivatives in the loop.

This gives us

iM5 = iM6 = ×

∫

d4θ V1(θ)V2(θ)
1
16D

2D
2
δ(4)(θ − θ′)

∣

∣

∣

θ=θ′

(4)

where the superfield factor evaluates to simply

S5,6 =

∫

d4θ V1(θ)V2(θ). (5)

As to the ordinary-graph factor, it yields

iG5,6 = =

∫

reg

d4p

(2π)4
i

p2 −mm∗ + i0
× i(±2g)2, (6)

where ‘reg’ indicates the UV regulation needed by the momentum integral — otherwise, it

would diverge quadratically. Altogether

M5 = M6 = G5,6 × S5,6 = 4ig2 ×

∫

reg

d4p

(2π)4
1

p2 −mm∗ + i0
×

∫

d4θ V1(θ)V2(θ). (7)

Next, consider the diagrams #3 and #4. This time, the loop in each of these diagrams

comprises 2 scalar propagators, one of the AB type which carries D
2
, and the other of the
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BA type which carries D2. Altogether, there are 4 spinor derivatives in the loop, and that’s

precisely what we need to take care of the fermionic δ functions. Indeed,

M3 = M4 = ×

×

∫

d4θ1

∫

d4θ2 V1(θ1)V2(θ2)×
mD2

−4
δ(4)(θ1 − θ2)×

m∗D
2

−4
δ(4)(θ2 − θ1)

(8)

where the superfield factors becomes (after integrating by parts)

S3,4 = mm∗

∫

d4θ1

∫

d4θ2 V1(θ1)V2(θ2)× δ(4)(θ1 − θ2)×
1
16D

2D
2
δ(4)(θ2 − θ1)

= mm∗

∫

d4θ1 V1(θ1)V2(θ1)×
1
16D

2D
2
δ(4)(θ2 − θ1)

∣

∣

∣

θ2=θ1

= mm∗

∫

d4θ1 V1(θ1)V2(θ1).

(9)

As to the ordinary-graph part,

iG3,4

=

∫

reg

d4p1
(2π)4

i

p21 −mm∗ + i0
× (+2ig)×

i

(p2 = p1 + k)2 −mm∗ + i0
× (−2ig)

(10)

where again we need to regulate the UV divergence of the momentum integral, although this

time the divergence is logarithmic rather than quadratic. Altogether,

M3 = M4 = G3,4 × S3,4 = 4ig2 ×

∫

reg

d4p1
(2π)4

mm∗

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
×

×

∫

d4θ V1(θ)V2(θ).

(11)

Note that the amplitudes (7) and (11) have similar superfield factors, so it would be

convenient to combine their momentum integral parts together. Since this would involve
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identifying the momentum integration variables of two different divergent integrals, we have

to be careful about implicitly shifting those momenta — which may be allowed or forbidden,

depending on the precise UV regulation scheme we are going to use.

In these notes I am going to use DR— the dimensional reduction — as the UV regulator.

This regulator is manifestly supersymmetric; moreover, it leaves all the superfields, the

vertices, the propagators, and the derivative algebra precisely as in the un-regulated theory,

so we do not need to redo any calculations. The only things affected by the DR are the

momentum integrals — the dimension is reduced from d = 4 down to d = 4 − 2ǫ. But

even here, the DR allows us arbitrary constant shifts of the loop momentum variables,
∫

ddp →
∫

ddp′ for p′µ = pµ + (const)µ.

In particular, the DR allows us to identify the loop momentum p in eq. (7) — defined

as the momentum of the only scalar propagator in the diagram #5 or #6 — with the loop

momentum p1 in eq. (11), defined as the momentum of the top scalar propagator in diagrams

#3 or #4. Consequently, we may combine the DR-regulated momentum integrals as

∫

DR

d4p

(2π)4
1

p2 −mm∗ + i0
+

∫

DR

d4p1
(2π)4

mm∗

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]

=

∫

DR

d4p1
(2π)4











1

p21 −mm∗ + i0
+

+
mm∗

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]











=

∫

DR

d4p1
(2π)4

1

p21 −mm∗ + i0
×

(

1 +
mm∗

(p1 + k)2 −mm∗ + i0

)

=

∫

DR

d4p1
(2π)4

1

p21 −mm∗ + i0
×

(p1 + k)2

(p1 + k)2 −mm∗ + i0
,

(12)

so the net contribution of the diagrams 3,4,5,6 to the two-photon amplitude is
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M3456 ≡ M3 + M4 + M5 + M6

= 2× 4ig2
∫

DR

d4p1
(2π)4

(p1 + k)2

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
×

×

∫

d4θ V1(θ)V2(θ)

(13)

where the overall factor 2 comes from adding M3 +M4 as well as M5 +M6.

Finally, consider the diagrams #1 and #2. This time we get

M1 = M2 = ×

×

∫

d4θ1

∫

d4θ2 V1(θ1)V2(θ2)×
1
16D

2D
2
δ(4)(θ1 − θ2)×

1
16D

2D
2
δ(4)(θ2 − θ1)

(14)

where the superfield factor has 8 spinor derivatives — 4 more than we need to take care

of the fermionic δ-functions. This situation is similar to what we had in the homework

set#3, problem 2, so we proceed in a similar manner: First, we integrate by parts to move

the derivatives from the first δ-function to the second δ-function or to the external field V2,

hence

S1,2 =

∫

d4θ1

∫

d4θ2 V1(θ1)δ
(4)(θ1 − θ2)×

1
16D

2D
2
(

V2(θ2)×
1
16D

2D
2
δ(4)(θ2 − θ1)

)

=

∫

d4θ1 V1(θ1)
1
16D

2D
2
V2(θ1)

1
16D

2D
2
δ(4)(θ2 − θ1)

∣

∣

∣

θ1=θ2

(15)

where on the last line all the derivatives are WRT θ1 and each derivative acts on everything

to its right. Second, we crank the Leibniz rule for the Dα and D
α̇
derivatives to obtain

D2D
2
(

V2 ×D2D
2
δ
)

=
(

D2D
2
V2

)

×D2D
2
δ

+ 4
(

DαDα̇V2
)

×DαD
α̇
D2D

2
δ

+ V2 ×D2D
2
D2D

2
δ

+ 6 more terms which vanish for θ1 = θ2

(16)

because they have different numbers of D and D derivatives acting on the δ ≡ δ(4)(θ2 − θ1).
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Third, we use the anticommutation relation {Dα, Dα̇} = 2qαα̇ to simplify

DαD
α̇
D2D

2
δ = 2qα̇α ×D2D

2
δ and D2D

2
D2D

2
δ = 16q2 ×D2D

2
δ. (17)

Note: the momentum qµ in these formulae belongs to the propagator that gave rise to the

δ(4)(θ2 − θ1), namely the bottom propagator in the diagram #1 or #2, thus q ≡ p2. In

the momentum integral associated with these diagrams we shall use the top propagators’

momentum p1 as the integration variable, hence q = p2 = p1 + k.

Finally, we make use of

D2D
2
δ(4)(θ2 − θ1) = +16 for θ1 = θ2 . (18)

Plugging this formula and eqs. (17) into eq. (16), we obtain

D2D
2
(

V2 ×D2D
2
δ
)

θ1=θ2
= 16D2D

2
V2

+ 128(p1 + k)µσ̄α̇αµ ×DαDα̇V2

+ 256(p1 + k)2 × V2 .

(19)

and hence the superfield factor of the diagram #1 or #2:

S1,2 =

∫

d4θ V1 ×
(

1
16D

2D
2
+ 1

2(p1 + k)µσ̄α̇αµ ×DαDα̇ + (p1 + k)2
)

V2. (20)

Note: the powers of momentum (p1+k)µ in this formula acts as numerators in the momentum

integral stemming from the ordinary-graph part of the amplitude,

iG1,2

=

∫

DR

d4p1
(2π)4

i

p21 −mm∗ + i0
× (±2ig)×

i

(p2 = p1 + k)2 −mm∗ + i0
× (±2ig)

(21)
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Thus, altogether the first two diagrams yield

M12 ≡ M1 + M2 = 2×M1

= 2×−4ig2
∫

DR

d4p1
(2π)4

1

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
×

×

∫

d4θ V1

(

1
16D

2D
2
V2 + 1

2(p1 + k)µσ̄α̇αµ ×DαDα̇V2 + (p1 + k)2 × V2

)

.

(22)

Now let us combine all six one-loop diagrams. In the DR regulation scheme for the

momentum integrals we may identify the integration variable p1 of eq. (13) with the similar p1

variable of eq. (22). This gives us similar momentum integrals, or rather similar denominators

of the momentum integrals for all the diagrams — the numerators hiding inside the
∫

d4θ

are quite different. Taking into account the opposite overall signs of eqs. (13) and (22), we

obtain

Mnet
loops = −8ig2 ×

∫

DR

d4p1
(2π)4

1

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
×

×

∫

d4θ V1





1
16D

2D
2
V2 + 1

2(p1 + k)µσ̄α̇αµ ×DαDα̇V2 + (p1 + k)2 × V2

− (p1 + k)2 × V2





(23)

Note that inside the superfield integral, the terms quadratic in (p2 = p1 + k) cancel each

other when we total up all the diagram. Consequently, the net momentum integral diverges

linearly rather than quadratically before we apply the DR regularization.

Moreover, the linear divergence can be taken care of by averaging between p1 and −p2 =

−p1−k. Indeed, both the integration measure and the net denominator are symmetric with

respect to the variable change p1 ↔ −p1 − k, and they remain symmetric after the DR

regulation. Consequently, for any numerator f(p1) we have
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∫

DR

d4p1
(2π)4

f(p1)

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]

=

∫

DR

d4p1
(2π)4

f(−p1 − k)

[(p1 + k)2 −mm∗ + i0]× [p21 −mm∗ + i0]

=

∫

DR

d4p1
(2π)4

1
2f(p1) +

1
2f(−p1 − k)

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
,

(24)

or in other words, in the context of the numerator of the momentum integral, we may replace

any

f(p1) → 1
2f(p1) + 1

2f(−p1 − k). (25)

In particular, for the linear terms in the numerator we may replace

pµ1 → 1
2p

µ
1 + 1

2(−p1 − k)µ = −1
2k

µ (26)

and hence

(p1 + k)µ → +1
2k

µ. (27)

In the context of the amplitude (23), this replacement gives us

Mnet
loops = −8ig2 ×

∫

DR

d4p1
(2π)4

1

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
×

×

∫

d4θ V1

(

1
16D

2D
2
V2 + 1

4k
µσ̄α̇αµ ×DαDα̇V2

)

(28)

Note that the second line here depends on the external photons’ momentum kµ but not on

the loop momentum pµ1 . Consequently, the momentum integral on the first line has only a

logarithmic UV divergence.

Now let’s go through one last round of simplification for the superfield factor of the

amplitude (28). Assigning momenta to the external fields, we have

Snet =

∫

d4θ V1(+k, θ)×
(

1
16D

2D
2
+ 1

4k
µσ̄α̇αµ DαDα̇

)

V2(−k, θ). (29)

Since all the fermionic derivatives here act on the V2(−k, θ) superfield, they anticommute to
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{Dα, Dα̇} = −2kµσ
µ
αα̇, note the minus sign. Consequently

[

Dα, D
2]

= −4kµσ
µ
αα̇D

α̇
(30)

and hence

DαD
2
Dα = D2D

2
− Dα

[

Dα, D
2]

= D2D
2
+ 4kµσ

µ
αα̇D

αD
α̇
. (31)

Comparing this expression to the derivative operator inside () in eq. (29), we immediately

obtain

Snet =

∫

d4θ V1(+k, θ) 1
16D

αD
2
DαV2(−k, θ). (32)

— which looks exactly like the kinetic-energy Lagrangian for the vector superfields. In other

words, the whole two-photon amplitude amounts to the wave-function renormalization of

the vector superfield!

Renormalization calls for the counterterms, in particular

LCT ⊃ δ3 ×

∫

d4θ V 1
8D

αD
2
DαV. (33)

At the one-loop level δ3 = O(g2) and we include the tree diagram containing this countert-

erm, thus

iM7 =

δ3
= 2iδ3 ×

∫

d4θ V1(+k, θ) 1
8D

αD
2
DαV2(−k, θ). (34)

Note the factor of 2 = 2! here, it stems from permutations of the two vector superfields.

Combining the six one-loop diagrams with this counterterm diagram, we obtain the net

two-photon amplitude

Mnet = M1 + M2 + M3 + M4 + M5 + M6 + M7

=
(

Πnet(k2) = Πloop(k2) + δ3
)

× 2

∫

d4θ V1(+k, θ) 1
8D

αD
2
DαV2(−k, θ).

(35)

The Πloop(k2) here is the momentum integral from eq. (28), including the pre-integral factor

−8ig2 and another factor 1/4 to account for different normalizations of the superfield factors
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in eqs. (32) and (35), thus

Πloop(k2) =
−8ig2

4
×

∫

DR

d4p1
(2π)4

1

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
. (36)

As far as this integral is concerned, the dimensional reduction DR acts exactly as the di-

mensional regularization, so we may evaluate this integral exactly as we have learned back

in the QFT2 class. First, we use the Feynman parameter trick to simplify the denominator,

1

[p21 −mm∗ + i0]× [(p1 + k)2 −mm∗ + i0]
=

1
∫

0

dx
1

[q2 −∆(x) + i0]2
(37)

for

q2 − ∆(x) + i0 = (1− x)× [p21 −mm∗ + i0] + x× [(p1 + k)2 −mm∗ + i0]

=
⇒

qµ = pµ1 + xkµ and ∆(x) = mm∗ − x(1− x)k2.

(38)

Second, we shift the loop momentum from p to q and then rotate q to the Euclidean space,

thus

Πloop(k2) = +2g2 ×

1
∫

0

dx

∫

DR

d4qe
(2π)4

1

[q2e +∆(x)]2
. (39)

Third, we reduce the dimension of the Euclidean integral from 4 to 4− 2ǫ, which gives us

∫

DR

d4qe
(2π)4

1

[q2e +∆(x)]2
=

∫

ddq

(2π)d
µ2ǫ

[q2 +∆]2

=
1

16π2
Γ(ǫ)×

(

4πµ2

∆(x)

)ǫ

−−→
ǫ→0

1

16π2

(

1

ǫ
− γE + log

4πµ2

∆(x)

)

.

(40)

Finally, we integrate over the Feynman parameter x to obtain

Πloop(k2) = +
2g2

16π2

(

1

ǫ
− γE + log

4πµ2

m2
+ J (−k2/m2)

)

(41)
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where

J (−k2/m2) =

1
∫

0

dx log
m2

m2 − k2 × x(1− x)
=

{

O(k2/m2) for k2 ≪ m2,

2− log(−k2/m2) for k2 ≫ m2.
(42)

The 1/ǫ pole in Πloop corresponds in DR to the logarithmic UV divergence of the mo-

mentum integral. To cancel this divergence from

Πnet(k2) = Πloop(k2) + δ3 (43)

we should set the δ3 counterterm to

δ
(1 loop)
3 = −

2g2

16π2
×

(

1

ǫ
+ finite

)

(44)

where the finite part depends on our renormalization scheme. As we have learned in the

QFT2 class, the negative coefficient of the 1/ǫ pole corresponds to the positive anomalous

dimension

γv = +
2g2

16π2
+ O(g4) (45)

of the vector superfields V — and hence of the component EM and photino fields. Also, the

SQED one-loop beta-function follows from this anomalous dimension as

β(g) = g × γv(g) = +
2g3

16π2
+ O(g5). (46)

Comparing to the ordinary QED.

In the component fields formalism, SQED is a QED-like theory of a massless EM field

coupled to a charged Dirac fermion (the electron) and two species of charged scalars (the

selectrons). There is also a neutral Majorana fermion (the photino) which has Yukawa

coupling to the electron and the selectrons.
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At the one-loop level — and only at the one-loop level, — the beta function for the

gauge coupling does not care about any neutral fields and any non-gauge interactions. All

it depends on is the spectrum of the charged fields, thus

β(e) = b1 × e3 + O(e5) (47)

where

b1 =
1

12π2
[for the electron] + 2×

1

48π2
[for each selectron] =

1

8π2
. (48)

By inspection, this formula agrees with eq. (46) when we identify e = g.

Generalization.

Finally, let’s generalize eq. (46) to the one-loop beta-function of SQED coupled to any

number of charged chiral superfields A1, . . . , An of respective charges q1g, . . . , qng. For such

a theory,

β(g) =
g3

16π2
×

∑

i

q2i + O(g5). (49)

Note: the sum here is over all the charged chiral superfields, so the electron and its super-

partners count give rise to 2 terms in this sum: One for the A superfield containing the

left-handed electron and one selectron, and one for the B superfield containing the left-

handed positron and the other selectron.
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