1. Consider supersymmetric QCD with N_{c} colors and $N_{f}<N_{c}$ flavors. In matrix notations, the quark chiral superfields $A_{i}{ }^{f}(y, \theta)$ form an $N_{c} \times N_{f}$ matrix A while the antiquark chiral superfields $B_{f}^{i}(y, \theta)$ form an $N_{f} \times N_{c}$ matrix B. Let all the flavors be exactly massless, so the Lagrangian is

$$
\begin{equation*}
\mathcal{L}=\frac{f}{2} \int d^{2} \theta \operatorname{tr}\left(W^{\alpha} W_{\alpha}\right)+\text { H.c. }+\int d^{4} \theta \operatorname{tr}\left(\bar{A} e^{+2 V} A+B e^{-2 V} \bar{B}\right) . \tag{1}
\end{equation*}
$$

(a) Show that the classical scalar potential of the theory has form

$$
\begin{equation*}
V_{\text {scalar }}=\frac{g^{2}}{8} \sum_{a=1}^{N^{2}-1}\left[\operatorname{tr}\left(\lambda^{a}\left(A A^{\dagger}-B^{\dagger} B\right)\right)\right]^{2} \tag{2}
\end{equation*}
$$

where $g^{2}=1 /$ Ref.
(b) Show that this potential vanishes if and only if

$$
\begin{equation*}
A A^{\dagger}-B^{\dagger} B=c \times \mathbf{1}_{\mathrm{N}_{\mathrm{c}} \times \mathrm{N}_{\mathrm{c}}} \tag{3}
\end{equation*}
$$

for some real number c. Also show that for $N_{f}<N_{c}$ this matrix relation implies $c=0$ and hence

$$
\begin{equation*}
A A^{\dagger}=B^{\dagger} B \tag{4}
\end{equation*}
$$

^ Lemma: Any complex square matrix X can be written as a product of two unitary matrices U_{1}, U_{2} and a real diagonal matrix D with non-negative eigenvalues.

$$
\begin{equation*}
X=U_{1} D U_{2} \tag{5}
\end{equation*}
$$

Proving this lemma is an optional exercise for the students.
(c) Generalize this lemma to the rectangular matrices such as A and B. Then show that the matrices A and B which obey eq. (4) may be written as
$A=U_{C} \times\left(\frac{\mathbf{D}_{N_{f} \times N_{f}}}{\mathbf{0}_{\left(N_{c}-N_{f}\right) \times N_{f}}}\right) \times V_{A}, \quad B=V_{B} \times\left(\mathbf{D}_{N_{f} \times N_{f}} \mid \mathbf{0}_{N_{F} \times\left(N_{c}-N_{f}\right)}\right) \times U_{C}^{-1}$
where U_{C} is an $S U\left(N_{c}\right)$ matrix (same gauge symmetry for A and B), V_{A} and V_{B} are $N_{F} \times N_{F}$ unitary matrices, and \mathbf{D} is a real ≥ 0 diagonal $N_{f} \times N_{F}$ matrix, same $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots d_{N_{f}}\right)$ for both A and B.
(d) The independent holomorphic moduli of the flat directions form an $N_{f} \times N_{f}$ matrix $\mathcal{M}=B A$. (We assume $N_{f}<N_{c}$.) Use eqs. (5) and (6) to show that any given complex $N_{f} \times N_{f}$ matrix \mathcal{M} can be written as a product $B A$ of rectangular matrices obeying eqs. (4). Also, argue that any two such decompositions $\mathcal{M}=B A=B^{\prime} A^{\prime}$ of the same matrix \mathcal{M} are gauge-equivalent to each other, $A^{\prime}=U A, B^{\prime}=A U^{-1}$ for the same $U \in S U\left(N_{c}\right)$.

In other words, there is a one-to-one correspondence between the classical moduli space of SQCD and the space of complex $N_{f} \times N_{f}$ matrices \mathcal{M}.
2. Next, an exercise in superfield Feynman rules. Evaluate the 1-loop diagram

(a) Dress the graph with the fermionic derivatives $-\frac{1}{4} D^{2}$ and $-\frac{1}{4} \bar{D}^{2}$ for the propagators, then eliminate some of these derivatives according to the vertices. Then show that after integrating $\int d^{4} \theta$ for 3 out of 4 vertices of the graph, the Feynman amplitude
takes form

$$
\begin{align*}
i \mathcal{M}=\int & \frac{d^{4} q_{4}}{(2 \pi)^{4}} \frac{y^{2} y^{* 2}}{\left(q_{1}^{2}+i 0\right)\left(q_{2}^{2}+i 0\right)\left(q_{3}^{2}+i 0\right)\left(q_{4}^{2}+i 0\right)} \times \\
& \times\left.\frac{1}{256} \int d^{4} \theta_{4} \Phi_{1}\left(\theta_{4}\right) \bar{\Phi}_{2}\left(\theta_{4}\right) D^{2} \bar{D}^{2} \Phi_{3}\left(\theta_{4}\right) \bar{\Phi}_{4}\left(\theta_{4}\right) D^{2} \bar{D}^{2} \delta^{(4)}\left(\theta_{4}-\theta_{1}\right)\right|_{\theta_{1}=\theta_{4}} \tag{8}
\end{align*}
$$

Note: The derivatives in this formula are $\operatorname{WRT} \theta_{4}$, and each derivative acts on everything to its right.
(b) Work out the action of derivatives on the $\delta^{(4)}\left(\theta_{4}-\theta_{1}\right)$ factor and show that the integral on the second line of the amplitude (8) evaluates to

$$
\begin{equation*}
\int d^{4} \theta \Phi_{1} \bar{\Phi}_{2} \times\left(\frac{1}{16} D^{2}\left(\Phi_{3} \bar{D}^{2} \bar{\Phi}_{4}\right)+\frac{\left(q_{4}^{\mu} \bar{\sigma}_{\mu}\right)^{\dot{\alpha} \alpha}}{2} \times D_{\alpha}\left(\Phi_{3} \bar{D}_{\dot{\alpha}} \bar{\Phi}_{4}\right)+\left(q_{4}^{2}\right) \times \Phi_{3} \bar{\Phi}_{4}\right) \tag{9}
\end{equation*}
$$

where all the superfields depend on the same superspace coordinates θ^{α} and $\bar{\theta}^{\dot{\alpha}}$, and q_{4}^{μ} is the momentum carried by the bottom propagator in the loop.

This exercise shows that the momentum-integral part of a superfield Feynman graph can have both numerator and denominator factors. The denominators come from the propagators, while the numerators follow from the D-derivative algebra in the superfield part of the amplitude.
3. Now, let's count the fermionic derivatives and the powers of loop momenta in a generic superfield Feynman graph. For simplicity, let's focus on a Wess-Zumino-like model of one chiral superfield Φ with a generic polynomial superpotential of degree $n>3$.

$$
\begin{align*}
\mathcal{L} & =\int d^{4} \theta \bar{\Phi} \Phi+\int d^{2} \theta W(\Phi)+\int d^{2} \bar{\theta} W^{*}(\bar{\Phi}) \tag{10}\\
W & =\frac{m}{2} \Phi^{2}+\frac{y}{6} \Phi^{3}+\cdots+\frac{c_{n}}{n!} \Phi^{n}
\end{align*}
$$

(a) Write down the superfield Feynman rules (the vertices and the propagators) for this theory.

Now consider a generic Feynman graph with L loops, V vertices (of all kinds), P propagators of the $\bar{\Phi} \Phi$ type, and P^{\prime} propagators of the $\Phi \Phi$ or $\overline{\Phi \Phi}$ types.
(b) Count the fermionic derivative operators D^{α} and $\bar{D}^{\dot{\alpha}}$ for the graph before you do the Grassmannian integrals and use up some derivatives to close the loops via $\left.D^{2} \bar{D}^{2} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right)\right|_{\theta_{1}=\theta_{2}}=16$, etc.. Show that

$$
\begin{equation*}
\text { net } \#\left(D^{\alpha}\right)+\#\left(\bar{D}^{\dot{\alpha}}\right)=2 L+2 P-2 \text {. } \tag{11}
\end{equation*}
$$

(c) Now let's do the Grassmannian integrals $\int d^{4} \theta_{2} \cdots \int d^{4} \theta_{V}$. This process soaks up some of the fermionic derivatives, while the remaining derivatives either end up acting on the external-leg fields in the remaining $\int d^{4} \theta_{1}$ integral, or else they may produce powers of the loop momenta in the numerator via the anticommutators $\left\{D_{\alpha}, \bar{D}_{\dot{\alpha}}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu} q_{\mu}$. Calculate the maximal power of loop momenta in the numerator that may result from this process.
(d) Calculate the superficial degree of divergence Δ of the momentum integral of the Feynman graph.
(e) Finally, show that

$$
\begin{equation*}
\Delta \leq 2-E-P^{\prime}+\sum_{k=3}^{n}(k-3) V_{k} \tag{12}
\end{equation*}
$$

where E is the number of the graph's external legs and V_{k} is the number of vertices with k legs. Then use eq. (12) to argue that the WZ model with a cubic superpotential is renormalizable while theories with higher-order $n \geq 4$ superpotentials are not renormalizable.
4. The last problem is about supersymmetric QED,

$$
\begin{equation*}
\mathcal{L}=\int d^{4} \theta\left(\bar{A} e^{+2 e V} A+\bar{B} e^{-2 e V} B+\frac{1}{8} V D^{\alpha} \bar{D}^{2} D_{\alpha} V\right)+\int d^{2} \theta m A B \int d^{2} \bar{\theta} m^{*} \overline{A B} \tag{13}
\end{equation*}
$$

The superfield Feynman rules for SQED will be explained in class next week. For now, please take them for granted:

- Chiral propagators:

$$
\begin{align*}
& \bar{A} \longleftrightarrow A=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{\bar{D}^{2} D^{2}}{16} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right), \\
& \bar{A} \bar{B}=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{m \bar{D}^{2}}{4} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right), \tag{14}\\
& B \longleftrightarrow A=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{m^{*} D^{2}}{4} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right), \\
& B \longleftarrow \bar{B}=\frac{i}{p^{2}-m m^{*}+i 0} \times \frac{D^{2} \bar{D}^{2}}{16} \delta^{(4)}\left(\theta_{1}-\theta_{2}\right),
\end{align*}
$$

- Vector propagator in the Feynman gauge:

$$
\begin{equation*}
V \sim \sim \sim \sim V=\frac{i}{k^{2}+i 0} \times \delta^{(4)}\left(\theta_{1}-\theta_{2}\right) \tag{15}
\end{equation*}
$$

- Vertices: One incoming chiral line, one outgoing chiral line of the same species, any number $n=1,2,3, \ldots$ of vector lines,

without any superderivative factors in the numerator or denominator.
Count the superderivatives and powers of momenta in a general Feynman diagram and show that a diagram with E_{C} external legs of chiral superfields $(A, B, \bar{A}$, or $\bar{B})$, E_{V} external legs of vectors, and any numbers of loops, vertices, and internal lines has superficial degree of divergence

$$
\begin{equation*}
\Delta \leq 2-E_{C} \tag{17}
\end{equation*}
$$

In class, I shall use this formula to prove that SQED is renormalizable.

