
PHY–396 T. Problem set #3. Due September 19, 2013.

1. Consider supersymmetric QCD with Nc colors and Nf < Nc flavors. In matrix notations,

the quark chiral superfields A f
i (y, θ) form an Nc×Nf matrix A while the antiquark chiral

superfields B i
f (y, θ) form an Nf ×Nc matrix B. Let all the flavors be exactly massless, so

the Lagrangian is

L =
f

2

∫

d2θ tr(WαWα) + H. c. +

∫

d4θ tr
(

Ae+2VA + B e−2VB
)

. (1)

(a) Show that the classical scalar potential of the theory has form

Vscalar =
g2

8

N2−1
∑

a=1

[

tr
(

λa
(

AA† − B†B
)

)]2
(2)

where g2 = 1/Ref .

(b) Show that this potential vanishes if and only if

AA† − B†B = c× 1Nc×Nc
(3)

for some real number c. Also show that for Nf < Nc this matrix relation implies

c = 0 and hence

AA† = B†B. (4)

⋆ Lemma: Any complex square matrix X can be written as a product of two unitary

matrices U1, U2 and a real diagonal matrix D with non-negative eigenvalues.

X = U1DU2 . (5)

Proving this lemma is an optional exercise for the students.
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(c) Generalize this lemma to the rectangular matrices such as A and B. Then show that

the matrices A and B which obey eq. (4) may be written as

A = UC×







DNf×Nf

0(Nc−Nf )×Nf






×VA , B = VB×

(

DNf×Nf
0NF×(Nc−Nf )

)

×U−1
C

(6)

where UC is an SU(Nc) matrix (same gauge symmetry for A and B), VA and VB

are NF ×NF unitary matrices, and D is a real ≥ 0 diagonal Nf × NF matrix, same

D = diag(d1, . . . dNf
) for both A and B.

(d) The independent holomorphic moduli of the flat directions form an Nf × Nf matrix

M = BA. (We assume Nf < Nc.) Use eqs. (5) and (6) to show that any given

complex Nf ×Nf matrix M can be written as a product BA of rectangular matrices

obeying eqs. (4). Also, argue that any two such decompositions M = BA = B′A′ of

the same matrix M are gauge-equivalent to each other, A′ = UA, B′ = AU−1 for the

same U ∈ SU(Nc).

In other words, there is a one-to-one correspondence between the classical moduli

space of SQCD and the space of complex Nf ×Nf matrices M.

2. Next, an exercise in superfield Feynman rules. Evaluate the 1-loop diagram

Φ1

Φ2 Φ3

Φ4

(7)

(a) Dress the graph with the fermionic derivatives −1
4D

2 and −1
4D

2
for the propagators,

then eliminate some of these derivatives according to the vertices. Then show that

after integrating
∫

d4θ for 3 out of 4 vertices of the graph, the Feynman amplitude
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takes form

iM =

∫

d4q4
(2π)4

y2y∗2

(q21 + i0)(q22 + i0)(q23 + i0)(q24 + i0)
×

×
1

256

∫

d4θ4 Φ1(θ4)Φ2(θ4)D
2D

2
Φ3(θ4)Φ4(θ4)D

2D
2
δ(4)(θ4 − θ1)

∣

∣

∣

θ1=θ4
.

(8)

Note: The derivatives in this formula are WRT θ4, and each derivative acts on every-

thing to its right.

(b) Work out the action of derivatives on the δ(4)(θ4−θ1) factor and show that the integral

on the second line of the amplitude (8) evaluates to

∫

d4θΦ1Φ2 ×

(

1

16
D2

(

Φ3D
2
Φ4

)

+
(qµ4 σ̄µ)

α̇α

2
×Dα

(

Φ3Dα̇Φ4

)

+ (q24)× Φ3Φ4

)

(9)

where all the superfields depend on the same superspace coordinates θα and θ̄α̇, and

qµ4 is the momentum carried by the bottom propagator in the loop.

This exercise shows that the momentum-integral part of a superfield Feynman graph

can have both numerator and denominator factors. The denominators come from the

propagators, while the numerators follow from the D-derivative algebra in the superfield

part of the amplitude.

3. Now, let’s count the fermionic derivatives and the powers of loop momenta in a generic

superfield Feynman graph. For simplicity, let’s focus on a Wess–Zumino-like model of one

chiral superfield Φ with a generic polynomial superpotential of degree n > 3.

L =

∫

d4θΦΦ +

∫

d2θW (Φ) +

∫

d2θ̄ W ∗(Φ),

W =
m

2
Φ2 +

y

6
Φ3 + · · · +

cn
n!

Φn.

(10)

(a) Write down the superfield Feynman rules (the vertices and the propagators) for this

theory.

Now consider a generic Feynman graph with L loops, V vertices (of all kinds), P propa-

gators of the ΦΦ type, and P ′ propagators of the ΦΦ or ΦΦ types.
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(b) Count the fermionic derivative operators Dα and D
α̇
for the graph before you do the

Grassmannian integrals and use up some derivatives to close the loops via

D2D
2
δ(4) (θ1 − θ2)|θ1=θ2

= 16, etc.. Show that

net #(Dα) + #(D
α̇
) = 2L + 2P − 2. (11)

(c) Now let’s do the Grassmannian integrals
∫

d4θ2 · · ·
∫

d4θV . This process soaks up some

of the fermionic derivatives, while the remaining derivatives either end up acting on

the external-leg fields in the remaining
∫

d4θ1 integral, or else they may produce powers

of the loop momenta in the numerator via the anticommutators {Dα, Dα̇} = 2σµαα̇qµ.

Calculate the maximal power of loop momenta in the numerator that may result from

this process.

(d) Calculate the superficial degree of divergence ∆ of the momentum integral of the

Feynman graph.

(e) Finally, show that

∆ ≤ 2 − E − P ′ +

n
∑

k=3

(k − 3)Vk (12)

where E is the number of the graph’s external legs and Vk is the number of vertices

with k legs. Then use eq. (12) to argue that the WZ model with a cubic superpoten-

tial is renormalizable while theories with higher-order n ≥ 4 superpotentials are not

renormalizable.

4. The last problem is about supersymmetric QED,

L =

∫

d4θ
(

Ae+2eV A + Be−2eVB + 1
8V DαD

2
DαV

)

+

∫

d2θmAB

∫

d2θ̄ m∗AB. (13)

The superfield Feynman rules for SQED will be explained in class next week. For now,

please take them for granted:
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• Chiral propagators:

A A =
i

p2 −mm∗ + i0
×

D
2
D2

16
δ(4)(θ1 − θ2),

A B =
i

p2 −mm∗ + i0
×

mD
2

4
δ(4)(θ1 − θ2),

B A =
i

p2 −mm∗ + i0
×

m∗D2

4
δ(4)(θ1 − θ2),

B B =
i

p2 −mm∗ + i0
×

D2D
2

16
δ(4)(θ1 − θ2),

(14)

• Vector propagator in the Feynman gauge:

V V =
i

k2 + i0
× δ(4)(θ1 − θ2). (15)

• Vertices: One incoming chiral line, one outgoing chiral line of the same species, any

number n = 1, 2, 3, . . . of vector lines,

A

A

V

V

= i(+2e)n,

B

B

V

V

= i(−2e)n, (16)

without any superderivative factors in the numerator or denominator.

Count the superderivatives and powers of momenta in a general Feynman diagram and

show that a diagram with EC external legs of chiral superfields (A, B, A, or B), EV ex-

ternal legs of vectors, and any numbers of loops, vertices, and internal lines has superficial

degree of divergence

∆ ≤ 2 − EC . (17)

In class, I shall use this formula to prove that SQED is renormalizable.
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