PHY-396 T. Problem set #3. Due September 19, 2013.

. Consider supersymmetric QCD with N, colors and Ny < N, flavors. In matrix notations,
the quark chiral superfields Aif (y,0) form an N, x Ny matrix A while the antiquark chiral
superfields B fi(y, 0) form an Ny x N, matrix B. Let all the flavors be exactly massless, so

the Lagrangian is

L = g/d% tr(WeW,) + Hee + /d49 tr (Ze+2VA + Be*WE) RENG)
(a) Show that the classical scalar potential of the theory has form

Ve = & i [ir (xe(a4f - B15))] )

where g2 = 1/Ref.

(b) Show that this potential vanishes if and only if
AAT — BTB = ¢x 1y, xn, (3)

for some real number c. Also show that for Ny < N, this matrix relation implies

¢ = 0 and hence

AAT = B'B. (4)

* Lemma: Any complex square matrix X can be written as a product of two unitary

matrices Uy, Uz and a real diagonal matrix D with non-negative eigenvalues.
X = U1 DUs. (5)

Proving this lemma is an optional exercise for the students.



(c¢) Generalize this lemma to the rectangular matrices such as A and B. Then show that

the matrices A and B which obey eq. (4) may be written as

DNfXNf
A=Usx| —— | xVy, B = VB><<DfoNf

O(chNf)XNf

ONFX(NcNf)) xUg*

(6)
where Ug is an SU(N,) matrix (same gauge symmetry for A and B), V4 and Vp
are Ny X Np unitary matrices, and D is a real > 0 diagonal N; x Np matrix, same

D = diag(dy,...dy,) for both A and B.

(d) The independent holomorphic moduli of the flat directions form an Ny x Ny matrix
M = BA. (We assume Ny < N..) Use egs. (5) and (6) to show that any given
complex Ny x Ny matrix M can be written as a product BA of rectangular matrices
obeying eqs. (4). Also, argue that any two such decompositions M = BA = B'A’ of
the same matrix M are gauge-equivalent to each other, A’ = UA, B’ = AU! for the
same U € SU(N,).

In other words, there is a one-to-one correspondence between the classical moduli

space of SQCD and the space of complex Ny x Ny matrices M.

2. Next, an exercise in superfield Feynman rules. Evaluate the 1-loop diagram

D) O3

dq Dy

. . . . -2
(a) Dress the graph with the fermionic derivatives —iDQ and —iD for the propagators,
then eliminate some of these derivatives according to the vertices. Then show that

after integrating [ d*@ for 3 out of 4 vertices of the graph, the Feynman amplitude



takes form

/ d4q4 y?y*?
IM =
Q1 + ZO)(Qz ZO)(% + ZO)((M + ZO)
x % 440, ®1(04)B(04) D?D ®3(04)B4(04) D*D" 5@ (0, — 01) o

(8)
Note: The derivatives in this formula are WRT 64, and each derivative acts on every-

thing to its right.
Work out the action of derivatives on the (¥ (64 —6;) factor and show that the integral

on the second line of the amplitude (8) evaluates to

= )da

_ 1 9 N — _
/d40 (blq)Q % (1_6 D2(¢3D2©4) + (qZLO-TM X Da((bng(I)4) —+ (qz) X @3@4) (9)

where all the superfields depend on the same superspace coordinates 6% and 6%, and

¢} is the momentum carried by the bottom propagator in the loop.

This exercise shows that the momentum-integral part of a superfield Feynman graph

can have both numerator and denominator factors. The denominators come from the

propagators, while the numerators follow from the D-derivative algebra in the superfield

part of the amplitude.

. Now, let’s count the fermionic derivatives and the powers of loop momenta in a generic

superfield Feynman graph. For simplicity, let’s focus on a Wess—Zumino-like model of one

chiral superfield ® with a generic polynomial superpotential of degree n > 3.

(a)

L :/d406<1> +/d20W(<I>) +/d29W*(6),

w= "2 Y3 4 ... 4 Do
2 6 n!

(10)

Write down the superfield Feynman rules (the vertices and the propagators) for this
theory.

Now consider a generic Feynman graph with L loops, V' vertices (of all kinds), P propa-

gators of the ®® type, and P’ propagators of the ®® or ®® types.



(b) Count the fermionic derivative operators D® and D for the graph before you do the
Grassmannian integrals and use up some derivatives to close the loops via

D*D*5™ (01 — 02)|p,—g, = 16, etc.. Show that

net #(D%) + #(D7) = 2L + 2P — 2. (11)

(¢c) Now let’s do the Grassmannian integrals [ dfy - - i d4‘9v- This process soaks up some
of the fermionic derivatives, while the remaining derivatives either end up acting on
the external-leg fields in the remaining [ d*6; integral, or else they may produce powers

of the loop momenta in the numerator via the anticommutators {D,, Dy} = 20k . ..

Calculate the maximal power of loop momenta in the numerator that may result from

this process.

(d) Calculate the superficial degree of divergence A of the momentum integral of the

Feynman graph.

(e) Finally, show that

A<2-E-P +> (k-3 (12)
k=3

where F is the number of the graph’s external legs and V} is the number of vertices
with k legs. Then use eq. (12) to argue that the WZ model with a cubic superpoten-
tial is renormalizable while theories with higher-order n > 4 superpotentials are not

renormalizable.

4. The last problem is about supersymmetric QED,
L = / d*e (ZW@VA + Be *VB + %vmﬁpw) + / d*0mAB / d*0m*AB. (13)

The superfield Feynman rules for SQED will be explained in class next week. For now,

please take them for granted:



e Chiral propagators:

_ i D" D?
A A = g, —0
- p2 — mm* + 0 16 U 2)
i mD”
A B - D 5@ p, — gy,
p? — mm* + 10 4
7 m*D? (14)
B A = sWg, — o
< —> p2_mm*+20 4 ( 1 2)7
7 D252

e Vertices: One incoming chiral line, one outgoing chiral line of the same species, any

number n = 1,2, 3, ... of vector lines,

A B

A = i(+2¢)", B = i(—2¢)", (16)

without any superderivative factors in the numerator or denominator.

Count the superderivatives and powers of momenta in a general Feynman diagram and
show that a diagram with Ec external legs of chiral superfields (A, B, A, or B), By ex-
ternal legs of vectors, and any numbers of loops, vertices, and internal lines has superficial

degree of divergence

A <2 — Eo. (17)

In class, I shall use this formula to prove that SQED is renormalizable.



