
PHY–396 T. Problem set #5. Due September October 3, 2013.

This homework is about Ward–Takahashi identities in supersymmetric QED,

L =

∫

d4θ

(

Ae+2VA + Be−2VB +
1

8g2
V DαD

2
DαV

)

. (1)

For simplicity I take the charged chiral superfields A and B to be massless. This is not important

for the Ward identities themselves — they hold just as well for the massive charged fields —

but it simplifies the proofs.

Note notations: in the following, Φ stands for either A or B and Φ for the corresponding A

or B; q = ±1 is the electric charge of the chiral field in question, q = +1 for the A and q = −1

for the B. The vector field are normalized non-canonically, V = gVcan. Consequently, the vector

propagators carry a factor (g2/2) while the vertices do not carry power of g (vertex = i(2q)n).

1. Consider the correlation function of a charged chiral field Φ and its conjugate Φ in the

background of a vector supefiled V (x, θ),

〈Ω〉TΦ(p, θ)Φ(−p′, θ′) |Ω〉 = S[V ]δ(4)(θ − θ′) (2)

where S is an operator involving spinor derivatives D and D, vector superfield V , and

functions of momenta. Expanding it in powers of the vector superfield, we have

S =
∞
∑

n=0

(2q)nSn(V1, . . . , Vn) (3)

where the Sn may be obtained diagrammatically as Feynman amplitudes with appropriate

external legs — a Φ, a Φ, and n vectors V1, . . . , Vn,

(2q)nSn(V1, . . . , Vn) =
ΦΦ

V1
V2 Vn

(4)

To be precise, these amplitudes are amputated with respect to the vector fields V1, . . . , Vn

but not the charged fields Φ and Φ; in other words, they include the external lines for the
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Φ and Φ but not for the vectors. On the other hand, these amplitudes include the external

vector fields Vi themselves but not the external Φ or Φ, and there is no overall
∫

d4θ, just

the operator between the Φ and the Φ,

(2q)n
∫

d4θΦ× Sn(V1, . . . , Vn) × Φ

This part only! (5)

For example, at the tree level

Stree
0 = =

iD2D
2

16p2
,

2q × Stree
1 (V1) = =

iD2D
2

16p21
× (2iqV1)×

iD2D
2

16p22
,

(2q)2 × Stree
2 (V1, V2) =

V2 V1

+
(

V1 ↔ V2
)

+

V1 V2

=
iD2D

2

16p21
× (2iqV2)×

iD2D
2

16p22
× (2iqV1)×

iD2D
2

16p23
+

(

V1 ↔ V2
)

+
iD2D

2

16p21
× 4q2iV2V1 ×

iD2D
2

16p22
,

etc., etc.
(6)

Note: the propagators and the vertices are spelled in the order of the line from Φ on the

right and Φ on the left because of the way S is sandwiched between the Φ and Φ.
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Your task is to show that if any of the vector fields happen to be chiral or antichiral,

Vi = Λ(y, θ) or Vi = Λ(ȳ, θ̄), then

Sn+1(V1, . . . , Vi = Λ, . . . , Vn+1) = −Sn(V1, . . . Vi . . . , Vn+1)× Λ,

Sn+1(V1, . . . , Vi = Λ, . . . , Vn+1) = −Λ× Sn(V1, . . . Vi . . . , Vn+1),
(7)

or graphically (suppressing powers of 2q)

ΦΦ

V1 Vn

Λ

= −
ΦΦ

V1 Vn

Λ

(8)

ΦΦ

V1 Vn

Λ

= −
ΦΦ

V1 Vn

Λ

(9)

(a) Prove the relations (7) at the tree level. Note: this does not work diagram-by-diagram.

Instead, you have to some over all the places the (n + 1)st “photon” Vn+1 = Λ or

Vn+1 = Λ can be inserted into an amplitude that already has n other photons.
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Now consider the n–vector amputated amplitudes without any external Φ or Φ lines,

V1V2

V3 Vn

= i(2q)n
∫

d4θ Vn(V1, . . . , Vn). (10)

A very important Ward–Takahashi identity says that all these amplitudes vanish when

any one of the vectors Vi is chiral or antichiral,

∫

d4θ V(V1, . . . , Vn) = 0 when any Vi = Λ or Vi = Λ (11)

(b) Prove this identity at the one-loop level. Note: this involves cancellation between

diagrams where that bad vector Vn = Λ or Vn = Λ is inserted into the charged loop

relative to the other n− 1 vectors.

Assume that all the loop-momentum integrals either converge or else may be regulated

in a way that does not affect the vertices or the chiral propagators. This assumption

allows us to cancel diagrams graphically without worrying about shifting the loop

momenta qµ → qµ + pµ in divergent
∫

d4q integrals.

(c) Finally, use (a) and (b) to prove the relations (7) and (11) to all orders of the pertur-

bation theory.
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2. Thanks to the Ward–Takahashi identities, SQED is renormalizable in superspace. In this

exercise, you shall see how this works.

Our first step is to restate the Ward Identities in terms of the one-particle-irreducible

(1PI) amplitudes: The all–vector 1PI amplitudes

1PI

V1V2

V3 Vn

= i(2q)n
∫

d4θ V1PI
n (V1, . . . , Vn) (12)

vanish when any of the vectros superfields is chiral or antichiral,

∫

d4θ V1PI
n (V1, . . . , Vn) → 0 when any Vi = Λ or Vi = Λ, (13)

while the two-scalars-plus–n–vectors 1PI amplitudes

ΦΦ

1PI

V1
V2 Vn

= i(2q)n
∫

d4θΦΓn(V1, . . . , Vn) Φ (14)

obey recursive relations: for n > 1 we have

Γ1(V = Λ) = Λ× (1 + Γ0), Γ1(V = Λ) = (1 + Γ0)× Λ, (15)

while for n > 1

Γn(V1, . . . , Vn−1, Vn = Λ) = Λ× Γn−1(V1, . . . , Vn−1),

Γn(V1, . . . , Vn−1, Vn = Λ) = Γn−1(V1, . . . , Vn−1)× Λ.
(16)
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Note that the 1 + Γ0 combination in eq. (15) is related to the dressed chiral propagator

≡ S0 =
1

1 + Γ0(p)
×

iD2D
2

16p2
. (17)

(a) Use the identities (7) and (11) from problem 1 to prove the relations (13), (15), and

(16). Note: (13) is trivial and (15) is easy but (16) takes work.

(b) In an earlier homework (set#3, problem 4) we saw that all the 1PI amplitudes Γn

have logarithmic divergences (superficial degree of divergence = 0). Use eqs. (15)

and (16) to show that all these divergences have exactly the same coefficient δZ ,

Γn(V1, . . . , Vn) = δZ × V1 · · ·Vn + finite, same δZ ∀n. (18)

Consequently,

∞
∑

n=1

(2q)n

n!
Γn(V, . . . , V ) = δZ × exp(2qV ) + finite (19)

and the renormalized SQED Lagrangian terms for the charged fields

Lren ⊃

∫

d4θ (1 + δZ)×
(

Ae+2VA + B e−2V B
)

(20)

have exactly the same gauge symmetry as in the classical Lagrangian.

Now consider the 1PI amplitudes (11) for n vectors and no external charged fields. By

the charge conjugation A ↔ B, V → −V , all the amplitudes with odd n vanish, so let’s

consider the even n only.

(c) Use eq. (13) to show that the all-vector amplitudes V1PI
n must involve several spinor

derivatives Dα and D
α̇
. The number of such derivatives should be at least 4 for n = 2

vectors and more than 4 for n = 4, 6, 8, . . ..

(d) Explain how these derivatives acting on the Vi superfields reduce the degree of di-

vergence of the momentum integral. Show that that the 2-vector amplitude V1PI
2
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diverges logarithmically while the n-vector 1PI amplitudes for n > 2 do not diverge

at all. Consequently, the renormalized Lagrangian for the vector superfield is simply

Lren
V =

∫

d4θ (g−2 + δ3)× V
DαD

2
Dα

8
V ≡ (g−2 + δ3)×Ltree

V . (21)

Note: together, eqs. (20) and (21) prove that in the superspace, SQED is renormalizable

despite having an infinite number of vertex types.
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