This homework is about Ward-Takahashi identities in supersymmetric QED,

$$
\begin{equation*}
\mathcal{L}=\int d^{4} \theta\left(\bar{A} e^{+2 V} A+\bar{B} e^{-2 V} B+\frac{1}{8 g^{2}} V D^{\alpha} \bar{D}^{2} D_{\alpha} V\right) \tag{1}
\end{equation*}
$$

For simplicity I take the charged chiral superfields A and B to be massless. This is not important for the Ward identities themselves - they hold just as well for the massive charged fields but it simplifies the proofs.

Note notations: in the following, Φ stands for either A or B and $\bar{\Phi}$ for the corresponding \bar{A} or $\bar{B} ; q= \pm 1$ is the electric charge of the chiral field in question, $q=+1$ for the A and $q=-1$ for the B. The vector field are normalized non-canonically, $V=g V_{\text {can }}$. Consequently, the vector propagators carry a factor $\left(g^{2} / 2\right)$ while the vertices do not carry power of g (vertex $\left.=i(2 q)^{n}\right)$.

1. Consider the correlation function of a charged chiral field Φ and its conjugate $\bar{\Phi}$ in the background of a vector supefiled $V(x, \theta)$,

$$
\begin{equation*}
\langle\Omega\rangle \mathbf{T} \Phi(p, \theta) \bar{\Phi}\left(-p^{\prime}, \theta^{\prime}\right)|\Omega\rangle=\mathcal{S}[V] \delta^{(4)}\left(\theta-\theta^{\prime}\right) \tag{2}
\end{equation*}
$$

where \mathcal{S} is an operator involving spinor derivatives D and \bar{D}, vector superfield V, and functions of momenta. Expanding it in powers of the vector superfield, we have

$$
\begin{equation*}
\mathcal{S}=\sum_{n=0}^{\infty}(2 q)^{n} \mathcal{S}_{n}\left(V_{1}, \ldots, V_{n}\right) \tag{3}
\end{equation*}
$$

where the \mathcal{S}_{n} may be obtained diagrammatically as Feynman amplitudes with appropriate external legs - a Φ, a $\bar{\Phi}$, and n vectors V_{1}, \ldots, V_{n},

To be precise, these amplitudes are amputated with respect to the vector fields V_{1}, \ldots, V_{n} but not the charged fields Φ and $\bar{\Phi}$; in other words, they include the external lines for the
Φ and $\bar{\Phi}$ but not for the vectors. On the other hand, these amplitudes include the external vector fields V_{i} themselves but not the external Φ or $\bar{\Phi}$, and there is no overall $\int d^{4} \theta$, just the operator between the Φ and the $\bar{\Phi}$,

$$
\begin{equation*}
(2 q)^{n} \int d^{4} \theta \Phi \times \underbrace{\mathcal{S}_{n}\left(V_{1}, \ldots, V_{n}\right)} \times \bar{\Phi} \tag{5}
\end{equation*}
$$

For example, at the tree level

etc., etc.

Note: the propagators and the vertices are spelled in the order of the line from $\bar{\Phi}$ on the right and Φ on the left because of the way \mathcal{S} is sandwiched between the $\bar{\Phi}$ and Φ.

Your task is to show that if any of the vector fields happen to be chiral or antichiral, $V_{i}=\Lambda(y, \theta)$ or $V_{i}=\bar{\Lambda}(\bar{y}, \bar{\theta})$, then

$$
\begin{align*}
& \mathcal{S}_{n+1}\left(V_{1}, \ldots, V_{i}=\Lambda, \ldots, V_{n+1}\right)=-\mathcal{S}_{n}\left(V_{1}, \ldots \not X_{i} \ldots, V_{n+1}\right) \times \Lambda, \tag{7}\\
& \mathcal{S}_{n+1}\left(V_{1}, \ldots, V_{i}=\bar{\Lambda}, \ldots, V_{n+1}\right)=-\bar{\Lambda} \times \mathcal{S}_{n}\left(V_{1}, \ldots \not X_{i} \ldots, V_{n+1}\right),
\end{align*}
$$

or graphically (suppressing powers of $2 q$)

(a) Prove the relations (7) at the tree level. Note: this does not work diagram-by-diagram. Instead, you have to some over all the places the $(n+1)^{\text {st }}$ "photon" $V_{n+1}=\Lambda$ or $V_{n+1}=\bar{\Lambda}$ can be inserted into an amplitude that already has n other photons.

Now consider the n-vector amputated amplitudes without any external Φ or $\bar{\Phi}$ lines,

A very important Ward-Takahashi identity says that all these amplitudes vanish when any one of the vectors V_{i} is chiral or antichiral,

$$
\begin{equation*}
\int d^{4} \theta \mathcal{V}\left(V_{1}, \ldots, V_{n}\right)=0 \quad \text { when any } V_{i}=\Lambda \text { or } V_{i}=\bar{\Lambda} \tag{11}
\end{equation*}
$$

(b) Prove this identity at the one-loop level. Note: this involves cancellation between diagrams where that bad vector $V_{n}=\Lambda$ or $V_{n}=\bar{\Lambda}$ is inserted into the charged loop relative to the other $n-1$ vectors.

Assume that all the loop-momentum integrals either converge or else may be regulated in a way that does not affect the vertices or the chiral propagators. This assumption allows us to cancel diagrams graphically without worrying about shifting the loop momenta $q^{\mu} \rightarrow q^{\mu}+p^{\mu}$ in divergent $\int d^{4} q$ integrals.
(c) Finally, use (a) and (b) to prove the relations (7) and (11) to all orders of the perturbation theory.
2. Thanks to the Ward-Takahashi identities, SQED is renormalizable in superspace. In this exercise, you shall see how this works.

Our first step is to restate the Ward Identities in terms of the one-particle-irreducible (1PI) amplitudes: The all-vector 1PI amplitudes

vanish when any of the vectros superfields is chiral or antichiral,

$$
\begin{equation*}
\int d^{4} \theta \mathcal{V}_{n}^{1 \mathrm{PI}}\left(V_{1}, \ldots, V_{n}\right) \rightarrow 0 \quad \text { when any } V_{i}=\Lambda \text { or } V_{i}=\bar{\Lambda} \tag{13}
\end{equation*}
$$

while the two-scalars-plus- n-vectors 1PI amplitudes

obey recursive relations: for $n>1$ we have

$$
\begin{equation*}
\Gamma_{1}(V=\Lambda)=\Lambda \times\left(1+\Gamma_{0}\right), \quad \Gamma_{1}(V=\bar{\Lambda})=\left(1+\Gamma_{0}\right) \times \bar{\Lambda} \tag{15}
\end{equation*}
$$

while for $n>1$

$$
\begin{align*}
& \Gamma_{n}\left(V_{1}, \ldots, V_{n-1}, V_{n}=\Lambda\right)=\Lambda \times \Gamma_{n-1}\left(V_{1}, \ldots, V_{n-1}\right) \\
& \Gamma_{n}\left(V_{1}, \ldots, V_{n-1}, V_{n}=\bar{\Lambda}\right)=\Gamma_{n-1}\left(V_{1}, \ldots, V_{n-1}\right) \times \bar{\Lambda} \tag{16}
\end{align*}
$$

Note that the $1+\Gamma_{0}$ combination in eq. (15) is related to the dressed chiral propagator

$$
\begin{equation*}
\Longleftrightarrow \equiv \mathcal{S}_{0}=\frac{1}{1+\Gamma_{0}(p)} \times \frac{i D^{2} \bar{D}^{2}}{16 p^{2}} \tag{17}
\end{equation*}
$$

(a) Use the identities (7) and (11) from problem 1 to prove the relations (13), (15), and (16). Note: (13) is trivial and (15) is easy but (16) takes work.
(b) In an earlier homework (set\#3, problem 4) we saw that all the 1PI amplitudes Γ_{n} have logarithmic divergences (superficial degree of divergence $=0$). Use eqs. (15) and (16) to show that all these divergences have exactly the same coefficient δ_{Z},

$$
\begin{equation*}
\Gamma_{n}\left(V_{1}, \ldots, V_{n}\right)=\delta_{Z} \times V_{1} \cdots V_{n}+\text { finite, } \quad \text { same } \delta_{\mathrm{Z}} \forall \mathrm{n} \tag{18}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(2 q)^{n}}{n!} \Gamma_{n}(V, \ldots, V)=\delta_{Z} \times \exp (2 q V)+\text { finite } \tag{19}
\end{equation*}
$$

and the renormalized SQED Lagrangian terms for the charged fields

$$
\begin{equation*}
\mathcal{L}^{\text {ren }} \supset \int d^{4} \theta\left(1+\delta_{Z}\right) \times\left(\bar{A} e^{+2 V} A+\bar{B} e^{-2 V} B\right) \tag{20}
\end{equation*}
$$

have exactly the same gauge symmetry as in the classical Lagrangian.
Now consider the 1PI amplitudes (11) for n vectors and no external charged fields. By the charge conjugation $A \leftrightarrow B, V \rightarrow-V$, all the amplitudes with odd n vanish, so let's consider the even n only.
(c) Use eq. (13) to show that the all-vector amplitudes $\mathcal{V}_{n}^{1 \mathrm{PI}}$ must involve several spinor derivatives D^{α} and $\bar{D}^{\dot{\alpha}}$. The number of such derivatives should be at least 4 for $n=2$ vectors and more than 4 for $n=4,6,8, \ldots$.
(d) Explain how these derivatives acting on the V_{i} superfields reduce the degree of divergence of the momentum integral. Show that that the 2 -vector amplitude $\mathcal{V}_{2}^{1 \mathrm{PI}}$
diverges logarithmically while the n-vector 1PI amplitudes for $n>2$ do not diverge at all. Consequently, the renormalized Lagrangian for the vector superfield is simply

$$
\begin{equation*}
\mathcal{L}_{V}^{\mathrm{ren}}=\int d^{4} \theta\left(g^{-2}+\delta_{3}\right) \times V \frac{D^{\alpha} \bar{D}^{2} D_{\alpha}}{8} V \equiv\left(g^{-2}+\delta_{3}\right) \times \mathcal{L}_{V}^{\mathrm{tree}} \tag{21}
\end{equation*}
$$

Note: together, eqs. (20) and (21) prove that in the superspace, SQED is renormalizable despite having an infinite number of vertex types.

