
PHY–396 T: SUSY. Problem set #8. Due October 24, 2013.

1. In class I showed how to integrate out one heavy quark flavor from the low-energy effective

field theory. In this problem you should generalize the formula to SQCD with several heavy

flavors, and ultimately to any gauge theory with any kings of multiplets of heavy chiral

superfields.

(a) Let’s start with the ordinary QCD (no SUSY) with Nc colors and Nf massive flavors.

Consider a chiral re-definition of the quark and antiquark flavors; in Weyl fermion

terms,

ψfcα 7→ Uff ′ψ
cf ′

α , ψ̃fcα 7→ Ũ f ′

f ψ̃f ′cα (1)

for two independent unitary Nf ×Nf matrices U and Ũ . In general, such redefinition

is not a symmetry of QCD; instead, it must be accompanied by the appropriate redef-

inition of the quark mass matrix m, and also by shifting the Θ angle to compensate

for the axial anomaly.

Write down the new mass matrix and the Θ angle and show that the combination

Θ = Θ + phase
(
det(m)

)
(2)

remains invariant. Note: in QCD it’s the Θ which governs the strong CP violation.

The experimental limits on such violations (such as neutron’s electric dipole moment)

imply |Θ| < 10−10

(b) In SQCD we may generalize eqs. (1) to arbitrary linear redefinitions of quark flavors,

Qfc 7→ Uff ′Q
f ′c, Q̃ 7→ Ũ f ′

f Q̃f ′c (3)

where the complex Nf × Nf matrices do not need to be unitary, only invertible. A

non-unitary field redefinition should be accompanied by the appropriate redefinition

of the kinetic energy matrices Z and Z̃ for the quarks and the antiquarks as well

as the mass matrix m; also, both real and imaginary parts of the Wilsonian gauge

coupling f should be adjusted to compensate for the Konishi anomaly.
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Write down the transformation rules for the Z, Z̃, and m matrices and of the f , and

show that the holomorphic combination

8π2f̄ = 8π2f − log det(m) (4)

remains invariant. Note: The imaginary part of this formula is eq. (2).

(c) Now, suppose all the quark flavors are very heavy, all eigenvalues(m) � ΛSQCD.

Let’s integrate them out from the low-energy effective theory — which is therefore a

quark-less SYM. Use eq. (4) and holomorphy to argue that

Λ3Nc

SYM = Λ
3Nc−Nf

SQCD × det(m)× a numeric constant. (5)

(d) Let’s run the renormalization group flow to verify eq. (5) for the magnitude
∣∣ΛSYM

∣∣.
For simplicity, suppose that the matrices m, Z, and Z̃ are diagonal and that the

physical quark masses

Mf =
|mf |√
Zf Z̃f

(6)

have hierarchically different values, say M1 � M2 � · · · � MNf
. In this case, the

RG flow has Nf well-separated thresholds.

Analyzing each threshold just like I did in class, show that after the last threshold we

obtain |ΛSYM| exactly as in eq. (5).

(e) Now consider SQCD that has both heavy and light flavors. Let’s integrate out the

heavy flavors only, so the low-energy effective theory includes both the gauge fields

and the light flavors. Generalize the result of part (d) to this case and write down a

holomorphic formula for the Λlow in terms of Λhigh and the mass matrix for the heavy

quarks.

(f) Optional exercise:

Generalize from SQCD to a SUSY gauge theory with any kind of a simple gauge

group G and “quarks” and “antiquarks” in some generic multiplets R1 + R2 + · · ·
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of G. Suppose that some of these “quarks” or “antiquarks” are heavy so we may

integrate them out from the low-energy effective theory.

Show that the resulting low energy theory has

−blow × log Λlow = −bhigh × Λhigh +
∑
i

Index(Ri)× logmi , (7)

where the sum is over heavy multiplets only, and bhigh and blow are the one-loop

beta-function coefficient of the respective high-energy and low-energy gauge theories.

2. Now consider the Higgs regime of QCD. Suppose several quark flavors have large VEVs

〈Φ〉 � Λ so we may treat the Higgs mechanism perturbatively. As we saw earlier in class,

in general VEVs of Nf flavors break the SU(Nc) gauge symmetry down to SU(Nc−Nf ),

while the VEVs themselves may be parametrized in a gauge-invariant form by the Nf×Nf
matrix

M f ′

f =
〈
Q̃cfQ

cf ′
〉
. (8)

This moduli matrix affects the Λlow of the un-broken SU(Nc−Nf ) gauge group according

to

λ
3(Nc−Nf )
low =

Λ
3Nc−Nf

high

det(M)
× a numeric constant. (9)

In class I derived this formula for Nf = 1, your task is to generalize it to any Nf ≤ Nc−2.

(a) Let’s start by deriving eq. (9) from holomorphy and Konishi anomaly of a linear

redefinition (3) of quark superfields. Show that the holomorphic combination

8π2f + det(M) (10)

is invariant under all redefinitions, then use this formula and the holomorphy of the

Λlow to derive eq. (9).
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(b) Now, let’s verify eq. (9) by running the RG flow through several thresholds due to

massive vector multiplets. For simplicity, assume diagonal VEVs of squark and anti-

squark matrices in some gauge with hierarchically different eigenvalues,〈
Qfc

〉
= δfc × φf and

〈
Q̃fc

〉
= δfc × φf , φ1 � φ2 � · · · � φNf

, (11)

so that the RG flow has well-separated thresholds.

Write down the physical masses of the vector superfields that become massive due to

each φf , then work out the matching condition for the RG flow at each threshold just

like I did it in class. Show that below the last threshold, the effective SU(Nc − Nf )

SYM theory has |Λlow| which agrees with eq. (9).

(c) Optional exercise:

Generalize eq. (9) to any SUSY gauge theory G Higgsed down to a subgroup G′ by

VEVs of chiral superfields belonging to any multiplets of G.

In general, the massive vector superfields in G−G′ form several multiplets of G′; let’s

label such multiplets by v and let Index′(v) denote the index of such a multiplet WRT

the unbroken G′. Show that

−blow× log Λlow = −bhigh×Λhigh − 2
∑
V

Index′(v)× log 〈Hv〉 + a numeric constant

(12)

where 〈Hv〉 is the VEV of the Higgs field that gives the vector fields in v their masses.

3. Finally, consider the non-perturbative superpotential due to gaugino condensation. Sup-

pose we have Nf ≤ Nc − 2 low-mass flavors with large VEVs, so the SU(Nc) is Higgsed

down to SU(Nc −Nf ) as in the previous problem.

(a) Show that the gaugino condensate in the un-broken SU(Nc−Nf ) subgroup gives rise

to the non-perturbative effective superpotential for the M f ′

f moduli fields

WNP (M) = −
Nc −Nf

16π2
×Λ3

low(M) =
Nc−Nf

√√√√Λ
3Nc−Nf

high

det(M)
×a numeric constant. (13)

(b) At the tree level, the mass term for the quarks give rise to a linear superpotential
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for the moduli, Wtree = − tr(mM) where m is the quark mass matrix. Adding the

non-perturbative term (13) we obtain

Wnet(M) = − tr(mM) + WNP (M). (14)

In a SUSY vacuum, this Wnet should have zero derivatives with respect of all N2
f

matrix elements of M. Show that these conditions lead to

〈M〉 ×m = m× 〈M〉 = 1Nf×Nf
× 〈S〉

16π2

where 〈S〉 = Λ3
low(〈M〉) =

Nc−Nf

√√√√Λ
3Nc−Nf

high

det(M)
× a numeric constant.

(15)

(c) Show that the Veneziano–Yankielowicz–Taylor effective superpotential

WVYT(S,M) = − tr(mM) +
S

16π2
×

log
SNc−Nf × det(M)

Λ
3Nc−Nf

high

+ const

 (16)

leads to the same equations (15) for the VEVs 〈S〉 and 〈M〉.

(d) Assume that none of the quarks is massless, thus det(m) 6= 0. Solve the equations (15)

and show that they have Nc distinct solutions.

(e) Show that when some flavors’ masses become very small, the corresponding squarks

get very large VEVs. For simplicity, assume a diagonal mass matrix m.

(f) Finally, suppose m = 0 and all the flavors are massless. For simplicity, assume the

moduli matrix is diagonal, M = diag(φ21, φ
2
2, . . . , φ

2
Nf

); semiclassically, this corre-

sponds to diagonal VEVs of the squark and antisquark matrices,
〈
Qfc

〉
= φfδ

fc,〈
Q̃fc

〉
= φfδfc. Assuming all the diagonal VEVs are large, all φg � Λ, we may
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approximate the the Kähler function by the tree-level

Ktree = 2
∑
f

φ∗fφf (17)

which leads to the scalar potential

Vs =
1

2

∑
f

∣∣∣∣∂WNP

∂φf

∣∣∣∣2 . (18)

Show that this potential decreases monotonically for φf → ∞, so all the VEVs run

away to infinity — there are no stable vacua, supersymmetric or otherwise.
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