
PHY–309 L. Solutions for Midterm Test # 2.

Problem #1:

(a) In general, a traveling wave has form

y(x, t) = f(x∓ ut) (1)

where f is a function of a single variable: f(x) gives the shape of the wave pulse at time

t = 0. Shifting the argument x → x ∓ ut makes the whole wave travel at speed u. The

direction of travel depends on the sign: the wave f(x − ut) travels to the right while the

wave f(x+ ut) travels to the left.

By comparison, a standing wave has general form

y(x, t) = f1(x)× f2(t) (2)

where the function f1(x) depends only on the position but not on the time, while the function

f2(t) depends only on the time but not on the position.

The wave in question can be re-written as

y = 0.01× sin
(

2π(900× t − 3× x)
)

= 0.01× sin
(

−6π(x − 300× t)
)

, (3)

which clearly has form

y(x, t) = f(x− 300× t) for f(x) = 0.01× sin(−6π × x). (4)

Comparing this formula to eq. (1) we immediately see that this is a traveling wave. Also, it

travels to the right at speed u = 300 m/s. (The unit m/s follows from x being in meters and

t in seconds.)
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(b) The sine function repeats itself with period 2π,

for any φ, sin(φ+ 2π) = sin(φ). (5)

Therefore, a sine wave of the form

y(t, x) = A× sin
(

2πft + (time-independent)
)

(6)

repeats in time with period

T =
2π

2πf
=

1

f
(7)

and hence frequency f . The wave in question does have the form (6) for f = 900, so it is a

periodic wave with frequency f = 900 Hz. (The unit Hz for Hertz stand for one cycle per

second; it follows from the time t being in seconds.)

Likewise, a wave having a sinusoidal x dependence of the form

y(t, x) = A× sin
(

2πkx + (position-independent)
)

or y(t, x) = A× sin
(

−2πkx + (position-independent)
)

,
(8)

repeats in space with wavelength

λ =
2π

2πk
=

1

k
. (9)

The wave in question indeed has form (8) with k = 3 (for x in units of meters), hence its

wavelength is

λ = 1
3
m = 0.33 m. (10)

Finally, the amplitude A is the coefficient multiplying the sin function, or rather the

absolute value of that coefficient, so that y(x, t) varies in the range from −A to +A. In

eq. (1) that coefficient is A = 0.01 m (since y is in meters) i.e. 1 centimeter.
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(c) The speed of a periodic wave with known frequency and wavelength obtains as

u = f × λ = (900 Hz)× (1
3
m) = 300 m/s. (11)

Naturally, this agrees with the wave speed obtained in part (a). (If it did not agree, we

would need to look for a mistake.)

(d) The speed of a transverse wave on a string depends on the string’s tension T and linear

mass density m/L, namely

u =

√

T

m/L
. (12)

Given the mass density m/L = 1.00 g/m = 1.00·10−3 kg/m and the wave speed u = 300 m/s

obtained in part (a) or part (b), we can solve eq. (12) for the string tension T as

u =

√

T

m/L
=⇒ u2 =

T

m/L
=⇒ u2 × (m/L) = T, (13)

thus

T = u2 × (m/L) = (300 m/s)2 × (1.00 · 10−3 kg/m) = 90 kg ·m/s2 = 90 N. (14)

In Anglo–American units, this tension is about 20 pounds.

Problem #2:

The key to this problem is the formula in the left column of textbook page 346,

d×
y

x
= m× λ (15)

Here d is the distance between neighboring lines of the diffraction grating, x is the distance

from the grating to the screen, and y is the position of the bright dot #m on the screen.

Note that m must be an integer, m = 0,±1,±2,±3, . . ..
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Let me first use this formula to solve the problem, and then I will explain the physical

origin of this formula. Solving eq. (15) for the position of the m th bright dot, we have

ym = m×
λx

d
. (16)

Note that all such dots are at equal distances

∆y =
λx

d
(17)

from each other.

(a) The problem specifies the wavelength λ = 475 nm = 475 · 10−9m of the laser light,

the distance x = 1.26 m from the diffraction grating to the screen, and the distance ∆y =

3.00 cm = 3.00 ·10−2m between the right blue dots on the screen. Plugging in all these data

into eq. (17) and solving it for the unknown variable d, we obtain

d =
λ× x

∆y
=

(475 · 10−9m)× (1.26 m)

3.00 · 10−2m
= 19.95 · 10−6m ≈ 20.0 µm. (18)

In other words, the diffraction grating has lines spaced every 20 micrometers, thus 50 lines

per millimeter.

(b) Given the same diffraction grating as in part (a) with d = 20.0 µm, the same distance

to the screen x = 1.26 m, but a red light with longer wavelength λ′ = 633 nm, the distance

between the bright red dots on the screen follows from simply plugging all these data into

eq. (17):

∆y′ =
λ′ × x

d
=

(633 · 10−9m)× (1.26 m)

29.95 · 10−6 m
= 40.03 · 1003 m ≈ 4.00 cm. (19)
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Alternative solution:

Eq. (17) tells us that for the same diffraction grating and the same distance to the screen,

the distance ∆y between the bright dots on the screen is proportional to the wavelength λ.

Indeed,

∆yred = λred ×
x

d
,

∆yblue = λblue ×
x

d
,

(20)

where the x/d factor is the same for both colors. Consequently, regardless of the value of

that factor, we have

∆yred
∆yblue

=
λred
λblue

=
633 nm

475 nm
= 1.333. (21)

Thus, given the ∆yblue = 3.00 cm distances between the blue dots, the distances between

the red dots must be

∆yred = 1.333×∆yblue = 1.333× 3.00 cm = 4.00 cm. (22)

Explanation of the formula (15):

Note: this explanation is just to help you understand the theory of diffraction gratings. I

did no expect you to work this out during the test.

The bright dots on the screen appear at points where all the waves traveling through

each slit of the diffraction grating interfere constructively. This requires all the waves getting

to the same bright dot B on the screen through different slits

so
u
rc
e

B
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to have travel distances that differ from each other by integer multiples of the wavelength,

dist(source → slit#n) + dist(slit#n → B) = common + λ× integer . (23)

For simplicity, let’s assume that the light source is directly behind the diffraction but very

far away, so the distances from all the slits to the source are approximately the same. This

simplifies eq. (23) to

dist(slit#n → B) = common + λ× integer . (24)

Also, let’s assume that the diffraction grating itself is much smaller than the distance to the

screen. Then the differences between the distances from two slits and point B is just the

projection of the vector connecting the two slits onto the direction to point B,

dist(slit#n → B) − dist(slit#0 → B) ≈ − sin θ × (Yslit#n − Yslit#0) (25)

where Y is the coordinate along the grating and θ is the angle between the direction towards

point B and the perpendicular to the grating. If the grating is parallel to the screen, then

tan θ =
y

x
. (26)

Since the slits on the diffraction grating are at equal distances from each other, we have

Yslit#n − Yslit#0 = n× d, (27)

hence

dist(slit#n → B) − dist(slit#0 → B) ≈ −n× d× sin θ (28)

and consequently

dist(slit#n → B) − dist(slit#n′ → B) ≈ (n′ − n)× d× sin θ. (29)

To make sure the waves getting to point B through all the slits satisfy eq. (24) and hence
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interfere constructively, we need

for any two slits#n, n′ (n′ − n)× d sin θ = λ× some integer. (30)

But since the slit numbers n, n′ are themselves integers, all we need is

d sin θ = mλ for some integer m. (31)

The physical meaning of the integer m here is very simple: it’s the number of the narrow

beam produced by the diffraction grating, counting from the central beam with m = 0 and

θ = 0. The other beams have directions

θm = arcsin
m× λ

d
(32)

and they cross the screen at points

ym = x× tan θm . (33)

To obtain eq. (15) from these formulae we need one more assumption, namely small

angles θm (in units of radians); this assumption is valid when d ≫ λ and the beam number

m is not too large. For small angles, cos θ ≈ 1 and hence tan θ ≈ sin θ. Consequently,

ym ≈ x× sin θm = x×
m× λ

d
= m×

λx

d
,

or equivalently

d×
ym
x

≈ m× λ. (15)
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Problem #3:

All kinds of mirrors — flat, convex, or concave — can produce virtual images seeming to be

behind the mirror. But different types of mirrors have different relations between distances

do from the mirror to the object and di from the mirror to the image:

• Flat mirrors do not distort distances: the image seems to be at the same distance

behind the mirror as the object is in front of the mirror, di = do.

• Convex mirrors bring images closer to the mirror than the object is, di < do.

• Concave mirrors make the image appear further away then the object, di > do. Now

consider the three mirrors in question.

(1) In the first mirror, the image seems to be further away than the object, di = 4′′ >

do = 3′′. According to the above rules, the first mirror must be concave.

(2) In the second mirror, the image is at the same distance as the object, di = 4′′ = do.

This mirror must be flat.

(3) In the third mirror, the image is closer in than the object, di = 4′′ < do = 5′′. This

mirror must be convex.

To see how the curvature of the mirror affects the image, the following diagram shows

rays from the same object reflected by 3 different mirrors: concave, flat, and convex.
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On this diagram, the black dot is the object and the black lines are two rays coming out of

it. (There is an infinite number of such rays, but I am showing only two.) The thick red,

green, and blue lines are the three mirrors, and the thin solid lines are the rays reflected from

each mirror. At the points where the rays are reflected, each mirror’s surface has a different

slope, so the same rays is reflected in different directions by different mirrors. Relative to

the vertical flat mirror (green), the concave mirror (red) is curved to the left, so the rays

reflected from (red) it go closer to the axis than the rays reflected by the flat mirror (green).

On the other hand, the convex mirror (blue) is curved to the right, so the rays reflected from

it (blue) go further away from the axis.

The dotted red, green, and blue lines show the extrapolations of the reflected rays on the
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other side of the mirrors. The colored dots at the intersection of the extrapolated rays are

the images of the object in the three mirrors. Because the concave mirror ‘tilts’ the reflected

rays closer to the axis, their extrapolations (red dashed lines) intersect further away from

the mirror, so the image (red dot) if further away from the mirror than the object, di > do.

On the other hand, the convex mirror ‘tilts’ the reflected rays away from the axis, so their

extrapolations (blue dashed lines) intersect closer to the mirror. Consequently, the image

(blue dot) in the convex mirror is closer to the mirror then the object, di < do.

Finally, let me diagram how three different mirrors can reflect three objects at different

distances and get virtual images at the same distance behind the mirror:
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Problem #4:

When a light ray goes from one transparent medium to another — for example, from air to

glass, or from glass to air — its direction changes according to the Snell’s Law of Refraction

θ1

θ2

n1

n1

n1 × sinα1 = n2 × sinα2 . (34)

Here n1 and n2 are the refractive indices of the two media, θ1 is the angle of incidence, θ2 is

the angle of refraction, and both angles are counted from the perpendicular to the boundary.

The prism in question has vertical left boundary while the light ray before the prism is

horizontal, thus ⊥ to the boundary. This means the angle of incidence is zero, so regardless

of the refractive indices the angle of refraction is also zero, and the light ray continues in the

horizontal direction inside the prism.

But the right boundary of the prism is tilted at 30◦ to the vertical, so the horizontal

light light ray makes a 60◦ angle with the boundary, which makes the angle if incidence

θ1 = 90◦ − 60◦ = 30◦ as shown on the diagram below

30
◦

60
◦

θ1 =
30

◦

θ2

This time, the ray does change direction. To find the angle of refraction θ2, we use the Snell’s
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Law (34) for refraction from the glass into the air, thus

n1 = nglass = 1.6 and n2 = nair ≈ 1, (35)

hence

sin θ2 =
n1
n2

× sin θ1 =
1.6

1
× sin 30◦ = 0.8 (36)

and θ2 = arcsin(0.8) ≈ 53◦.

Note that since the glass has a higher refractive index than the air, n1 > n2, the Snell’s

Law makes for the angle of refraction to be larger than the angle of incidence, θ2 > θ1. In

other words, the light ray bends further away from the ⊥ to the boundary. which means

that for the prism in question, the light ray bends downward as shown on the left picture (on

page 2 of the problem sheet). This is the answer to part (a) of the problem: the left picture

is right while the right picture is wrong.

As to part (b), the bending angle ∆θ follows from the diagram

θ1

θ1 θ2

∆θ = θ2 − θ1

Numerically,

∆θ = θ2 − θ1 = 53◦ − 30◦ = 23◦. (37)

So the bottom line is: The light ray bends 23◦ down.
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