1.7 Accuracy of Physical Data

Significant Figures

When physicists collect data in the laboratory, they express their results in a form
that includes three essential elements: a number giving the magnitude of the quan-
tity measured, a unit in terms of which the quantity is being measured, and an
estimated uncertainty in the measured value, since no physical measurement is ever
perfectly accurate. For example, a measurement of the diameter d of a coin with
an accurate steel ruler might lead to a value d = 2.45 centimeters (cm), where the
last figure is an estimate, but the measurement of the same diameter with a precision
measuring instrument called a micrometer caliper (Fig. 1.14) might yield a value
d = 2.446 cm. Here the same quantity is measured in the two cases, but the larger
number of digits given in the second measurement indicates that it was judged to
be more accurate than the first by the person making the measurement.

The digits given in reporting the results of an experiment, or in stating the data for
a problem to be solved, are called significant figures (or significant digits). For
example, 2.45 cm has three significant figures, whereas 2.446 c¢cm has four. The
greater the number of significant figures, the more accurate the data are presumed
to be. It is misleading for a physicist or physics student to use more significant
figures than are warranted by the apparatus used or the data given in the problem.

Zeros written at the right end of numbers are assumed to be significant figures,
for by convention they are included to indicate that the data are certain to this last
decimal place. For example, the charge on an electron is 1.60 x 10~ ' coulombs
(C), where the last zero is a significant figure. Zeros to the left of the first nonzero
digit are not significant, since they merely locate the decimal point and say nothing
about the accuracy of the number given. Thus 0.00164 is the same as 1.64 X
10 3 in powers-of-10 notation (Appendix 3.B). and in both cases the number has
only three significant figures. Because power-of-10 notation makes clear the num-
ber of significant figures, it is always used in examples and problems in this book
if the number of significant figures would otherwise be unclear.

The following rules are useful in handling significant figures:

1 The final result of an addition or subtraction of two or more quantities should
not contain more decimal places than the quantity with the smallest number of
decimal places.
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2 The final result of a multiplication or division should have only as many
significant digits as the quantity in the calculation with the smallest number of
significant digits.

The basic rationale behind these rules is that if we add an uncertain digit to
a certain one, the resulting digit is uncertain and should be omitted from the final
sum. Similarly, if a number with two significant figures is multiplied by one with
three significant figures, the multiplication of the completely uncertain (actually
unknown) third figure of the two-digit number destroys the certainty of the third
significant figure in the product. The result can therefore only be given to two
significant figures.

The examples and problems in this book have data given in most cases only
to two or three significant figures, depending on the nature of the problem. All
answers are therefore expected to include two or three significant figures, and no
more, for that is all the data can yield. This should be kept in mind when you are
tempted to write down the eight digits indicated on your calculator as the answer
to a problem or laboratory experiment. Computer programmers have a saying:
“‘Garbage in, garbage out.”” For our purposes insignificant figures are *‘garbage.”’
The result of any calculation can be no more certain (contain no more significant
figures) than the least certain piece of data used in that calculation.

FIGURE 1.14 A
micrometer caliper. The
instrument is designed so
that the movable rod moves
1 millimeter (mm) for each
complete turn of the screw.
A dial reads fractions of a
turn to the nearest 1/100
of a turn. The micrometer
can therefore measure
distances to 0.01 mm, or
0.001 cm. (Sargent-Welch
Scientific Co.)

Example 1.4

How many significant figures are there in the follow-
ing results for quantities measured in the laboratory?
(@) 2.997924 x 10* m/s (b) 3.0120 s (c) 0.00124 m (d) 100 s

SOLUTION

(@) Seven significant figures.

(b) Five significant figures. The final zero is significant, be-
cause it indicates that the last decimal place was measured to be
zero.

(c) Three significant figures. The zeros are not significant and

are needed only to position the decimal point. For clarity this
result would be better written as 1.24 X 10 m.

(d) Three significant figures. The final zeros are significant.
To make sure that this is what the experimenter intended, it
would be clearer if the result were given as 1.00 x 10” s.

Example 1.5

(a) Use Table B.2 (inside back cover) to find the mass difference
in kilograms between the rest masses of a proton and a neutron.
(b) If seven significant figures are used for the proton and neu-

tron rest masses, how many significant figures does the mass
difference have?

SOLUTION

(@) This is a case in which many more significant figures than
three are required to yield a meaningful result. From Table B.2
we have

m, = 1.672623 X 10 >7 kg m, = 1.674929 x 10?7 kg
The mass difference is then

Am

(1.674929 — 1.672623) x 10~ *" kg

= | 0.002306 x 10?7 kg

(b) The mass difference has only four significant figures and
is better written as 2.306 x 10 3° kg. This example illustrates
how, after subtraction, the result may have a much smaller num-
ber of significant figures than did the original numbers because
of cancellations.
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Example 1.6
(a) Write 0.00000027 in powers-of-10 notation. (b) Calculate
(2.56 x 10%) + (7.92 x 10%. (c) Calculate (2.56 X 10%) x

2.56 x 10°
(7.92 x 10%. (d) Calculate 792_x—104

SOLUTION

&) |27+ 1077

(b) (2.56 X 10°) + (7.92 x 10%) = (2.56 + 79.2) X 10°

= |481<8*x'10?

Notice that on adding 2.56 and 79.2, the second decimal
place no longer is significant, since 79.2 has only one significant
figure to the right of the decimal point. Hence we round off 2.56
to 2.6 and add it to 79.2 to obtain 81.8.

(€) (2.56 x 10°) x (7.92 x 10%) =

20.3 x 107

Here we multiply 2.56 by 7.92, rounding off the product
to three significant figures, and acd the powers of 10 to obtain
103+4 = 10".

2.56 X 10°

@ 7.92 x 10*

0.323 x 10!

Here we divide 2.56 by 7.92, round off the quotient to
three significant figures, and subtract the powers of 10 to obtain
1034 = 10~'. The result can also be written as 3.23 x 102




