
Notes on Elastic and Inelastic Collisions

In any collision of 2 bodies, their net momentum is conserved. That is, the net momentum

vector of the bodies just after the collision is the same as it was just before the collision,

~Pnet = m1~v
′
1 + m2~v

′
2 = m1~v1 + m2~v2 (1)

So if we know the velocity vectors of both bodies before the collision and if we also know the

velocity vector of one body after the collision, then using this formula we may find out the

velocity vector of the other body after the collision.

But if we only know the initial velocities of the two bodies and we want to find out their

velocities after the collision, we need to invoke additional physics. In particular, we need to

know what happens to the net kinetic energy of the two bodies,

Knet = 1
2m1v

2
1 + 1

2m2v
2
2 . (2)

It is convenient to reorganize this net kinetic energy into two terms, one due to the net mo-

mentum (1) of two particles and the other due to their relative velocity ~vrel = ~v1 − ~v2,

Knet =
~P2

net

2(m1 +m2)
+

m1m2

2(m1 +m2)
× ~v2

rel . (3)

• Proof: First, let’s expand vector squares

~P2
net = (m1~v1 +m2~v2)

2 = m2
1 × ~v2

1 + m2
2 × ~v2

2 + 2m1m2 × ~v1 · ~v2 ,

and ~v2
rel = (~v1 − ~v2)

2 = ~v2
2 + ~v2

2 + 2~v1 · ~v2 .
(4)

Next, let’s combine

~P2
net + m1m2 × ~v2

rel = m2
1 × ~v2

1 + m2
2 × ~v2

2 + 2m1m2 × ~v1 · ~v2

+ m1m2 × ~v2
1 + m1m2 × ~v2

2 − 2m1m2 × ~v1 · ~v2

= (m2
1 +m1m2)× ~v2

1 + (m2
2 +m1m2)× ~v2

2 + 0× ~v1 · ~v2

= 2(m1 +m2)×
[
1
2m1 × ~v2

1 + 1
2m2 × ~v2

2

]
.

(5)

Finally, let’s divide both sides of this long equation by by 2(m1 +m2):

~Pnet

2(m1 +m2)
+

m1 m2

2(m1 +m2)
× ~v2

rel = 1
2m1 × ~v2

1 + 1
2m2 × ~v2

2 = Knet . (6)

Quod erat demonstrandum.
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The first term in eq. (3) is the kinetic energy due to motion of the center of mass of the

two-body system (see second half of these notes for explanation),

Kcm =
~P2

net

2(m1 +m2)
=

m1 +m2

2
× ~v2

cm . (7)

This term is conserved in any two-body collision because the net momentum ~Pnet is conserved.

The second term in eq. (3) is the kinetic energy due to relative motion of the two colliding

bodies,

Krel =
m1m2

2(m1 +m2)
× ~v2

rel =
1

2

(
1

m1
+

1

m2

)−1

× (~v1 − ~v2)2 . (8)

What happens to this term during a collision depends on the elasticity of the colliding bodies:

• In an elastic collision, kinetic energy of the relative motion is converted into the elastic

energies of two momentarily compressed bodies, and then is converted back into the

kinetic energy, Krel → Uelastic → Krel. Therefore, K ′rel immediately after the collision is

the same as Krel immediately before the collision, and consequently the net kinetic energy

of the two colliding bodies is conserved,

K ′net = Knet ⇐⇒ 1
2m1 ~v

′2
1 + 1

2m2 ~v
′2
2 = 1

2m1 ~v
2
1 + 1

2m2 ~v
2
2 . (9)

Also, in light of eq. (8), K ′rel = Krel implies the same relative speed of the two bodies before

and after the collision,

∣∣~v′rel

∣∣ = |~vrel| ⇐⇒
∣∣~v′1 − ~v′2∣∣ = |~v1 − ~v2| , (10)

although the direction of the relative velocity vector is different.

• In an inelastic collision, a part of the Krel is converted into the elastic energy and then

back into the kinetic energy, while the rest of the initial Krel is converted into heat (or
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some other non-mechanical forms of energy). Therefore,

0 < K ′rel < Krel (11)

and hence

0 <
∣∣~v′1 − ~v′2∣∣ < |~v1 − ~v2| (12)

and

Kcm < K ′net < Knet . (13)

• In a totally inelastic collision, all of kinetic energy of relative motion is converted into

heat (or other non-mechanical energies), so after the collision K ′rel = 0 and there is no

relative motion:

~v′rel = ~0 ⇐⇒ ~v′1 = ~v′2 (14)

and

K ′net = Kcm =
~P2

net

2(m1 +m2)
< Knet . (15)

Totally Inelastic Collisions

In a totally inelastic collision, the two colliding bodies stick together and move at the same

velocity ~v′1 = ~v′2 = ~v′ after the collision. This common final velocity can be found from the

momentum conservation equation (1):

~Pnet = m1~v1 + m2~v2 = m1~v
′ + m2~v

′ = (m1 +m2)~v′, (16)

hence

~v′1 = ~v′2 = ~v′ =
m1

m1 +m2
~v1 +

m2

m1 +m2
~v2 . (17)

Special case: fixed target.

In particular, when only one particle moves before the collision, say ~v1 6= 0 but ~v2 = 0, then
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after the collision they both move with velocity

~v′1 = ~v′2 = ~v′ =
m1

m1 +m2
~v1 . (18)

The direction of this velocity is the same as the initial velocity ~v1 but the speed is reduced by

the factor m1/mnet,

v′ =
m1

m1 +m2
× v1 . (19)

General case: two moving particles.

If both bodies move before the collision, we should use eq. (17) as it is. Moreover, if the bodies

move in different directions — like two cars colliding at an intersection — we must sum their

momenta as vectors in order to obtain the final velocity. In components,

v′1x = v′2x =
m1v1x +m2v2x

m1 +m2
,

v′1y = v′2y =
m1v1y +m2v2y

m1 +m2
,

v′1z = v′2z =
m1v1z +m2v2z

m1 +m2
.

(20)

Head-on Elastic Collisions

In a perfectly elastic collision, the two bodies’ velocities before and after the collision satisfy

two constraints: eq. (10) stemming from kinetic energy conservation, and also

~P′net = ~Pnet ⇐⇒ m1~v
′
1 + m2~v

′
2 = m1~v1 + m2~v2 (21)

which is valid for any collision, elastic and otherwise.

Let’s focus on head-on elastic collisions where both bodies move along the same straight

line both before and after the collision. Such collisions are effectively one-dimensional, so we
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may dispense with vector notation and write eqs. (10) and (21) as

v′1 − v′2 = ±(v1 − v2) (22)

and

m1v
′
1 + m2v

′
2 = m1v1 + m2v2 . (23)

Together, they give us two independent linear equations for two unknowns, v′1 and v′2, so there

a unique solution. Or rather, there are two solutions, one for each sign in eq. (22): for the ‘+’

sign, the solution is

v′1 = v1 , v′2 = v2 , (24)

which happens when there is no collision at all. When the particles do collide, their velocities

have to change, so the sign in eq. (22) should be ‘−’. Multiplying both sides of this equation

by m2 and adding to eq. (23), we obtain

(m2 +m1)× v′1 + (−m2 +m2 = 0)× v′2 = (−m2 +m1)× v1 + (+m2 +m2)× v2 (25)

and hence

v′1 =
m1 −m2

m1 +m2
× v1 +

2m2

m1 +m2
× v2 . (26)

Similarly,

v′2 =
m2 −m1

m1 +m2
× v2 +

2m1

m1 +m2
× v1 . (27)

Together, eqs. (26) and (27) give us the velocities of both bodies immediately after a perfectly

elastic collision in terms of their velocities just before the collision.

Special case: equal masses.

When the two colliding bodies have equal masses, m1 = m2, eqs. (26) and (27) become much

simpler:

v′1 = v2 and v′2 = v1. (28)

In other words, the two colliding bodies exchange their velocities.
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Special case: fixed target.

Another situation where eqs. (26) and (27) become simpler is when only one body moves before

the collision, say v1 6= 0 but v2 = 0. After a perfectly elastic collision, the second body moves

away with velocity

v′2 =
2m1

m1 +m2
× v1 , (29)

which is twice the velocity it would have obtained in an inelastic collision. In particular,

for m2 � m1 , v′2 ≈ 2× v1 . (30)

For example, if a small body initially at rest suffers a perfectly elastic collision with a truck,

its velocity after the collision is twice the truck’s velocity, and it does not matter how heavy is

the truck as long as its much more massive than the body it hits.

As to the first body, its velocity after a perfectly elastic collision is

v′1 =
m1 −m2

m1 +m2
× v1 . (31)

If m1 > m2, it continues moving forward at a reduced speed, if m1 = m2, it stops moving, and

if m1 < m2, it bounces back! In an extreme case of m1 � m2, i.e. hitting a target much heavier

than itself, it bounces back with v′1 = −v1: same speed in the opposite direction.

Glancing Elastic Collisions

In a glancing collision, the two bodies bounce off at some angles from their initial direc-

tions. The motion in such collisions is inherently two-dimensional or three-dimensional, and we

absolutely have to treat all velocities as vectors. In other words, we are stuck with the vector

form of eqs. (10) and (21), or the equivalent component equations:

m1v
′
1x + m2v

′
2x = m1v1x + m2v2x ,

m1v
′
1y + m2v

′
2y = m1v1y + m2v2y ,

m1v
′
1z + m2v

′
2z = m1v1z + m2v2z ,

(v′1x − v′2x)2 + (v′1y − v′12)2 + (v′1z − v′2z)2 = (v1x − v2x)2 + (v1y − v2y)2 + (v1z − v2z)
2.

(32)

(The first three equations here spell out eq. (21) in components; the last equation is the square
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of eq. (10).) Clearly, this is a much more complicated equation system than just two linear

eqs. (22) and (23) for the head-on elastic collisions.

Before we even try to solve eqs. (32), let’s count the unknowns and the equations. In

three dimensions, the two unknown velocity vectors ~v′1 and ~v′2 after the collision amount to 6

unknown components — v′1x, v′1y, v′1z, v
′
2x, v′2y, and v′2z — but there are only 4 equations (32).

Consequently, there is no unique solution for all the unknowns but a continuous two-parameter

family of solutions. Thus, the initial velocities of the two bodies do not completely determine

their final velocities; to find them, we need to know the shapes of the two colliding bodies and

how exactly do they collide. Alternatively, if we know two independent properties of the final

velocities, then we can determine the other four. For example, if we know the direction of one

final velocity (which calls for two angles in 3D), then we can determine its magnitude, and bot

direction and magnitude of the other velocity.

Likewise, in two dimensions we have 3 equations

m1v
′
1x + m2v

′
2x = m1v1x + m2v2x ,

m1v
′
1y + m2v

′
2y = m1v1y + m2v2y ,

(v′1x − v′2x)2 + (v′1y − v′12)2 = (v1x − v2x)2 + (v1y − v2y)2,

(33)

for 4 velocity components v′1x, v′1y, v′2x, and v′2y, so we are one equation short. Again, the initial

velocities do not completely determine the final velocities, and we need one more data point to

find the outcome of the collision. For example, if we know either direction or speed of one body

after the collision, then we may solve eqs. (33) for the remaining direction(s) and speed(s).

But I would not do it here because the algebra is too messy for this 309 K class.

Notes on the Center of Mass and its Motion

Let’s start with a system of two point-like particles. The center of mass of this system lies

between the particles on the straight line connecting them. Specifically, for particles of masses

m1 and m2 at a distance L from each other, the center of mass is

at distance L1 =
m2

m1 +m2
× L from the first particle

and at distance L2 =
m1

m1 +m2
× L from the second particle.

(34)
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Equivalently, let the x axis run through both particles; then the center of mass of the two-

particle system is at

xcm =
m1

m1 +m2
× x1 +

m2

m1 +m2
× x2 . (35)

For an N particle system, we have a similar vector formula for the radius-vector of the

center of mass

~Rcm =
N∑
i=1

mi

Mtot
×~ri (36)

where Mtot = m1 + m2 + · · · + mN is the total mass of all the particles. In components, the

center of mass is at

Xcm =
N∑
i=1

mi

Mtot
× xi ,

Ycm =
N∑
i=1

mi

Mtot
× yi ,

Zcm =
N∑
i=1

mi

Mtot
× zi .

(37)

Finding the center of mass of a macroscopic body such as a human body or a piece of

machinery is more difficult. Formally, we can treat such a body as a system of N ∼ 1027

point-like atoms, then find the center of mass according to eq. (36) or eqs. (37). This is

absolutely correct, but alas totally impractical. Alternatively, we can treat the body in question

as continuous and replace the discrete sums in eqs. (37) with volume integrals:

Xcm =
1

Mtot

∫∫∫
body

dx dy dz ρ(x, y, z)× x (38)

and similar formulae for the Y and Z coordinates of the center of mass. This method is actually

used in science and engineering, but it’s way too complicated for the 309 K class, so I am not

going to explain it any further.
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Instead, I will give two rules which often let you find the center of mass without doing any

integrals.

1. The symmetry rule, for bodies of uniform density ρ(x, y, z) = const.

If a body has a uniform density and a symmetric geometry, then the center of mass lies

on the axis or plane of that symmetry. If there are several symmetry axis or planes, the

center of mass lies at their intersection. In particular, if there is a geometric center, the

center of mass is at that center. Here are a few examples:

• A solid ball of uniform density or a spherical shell of uniform density and thickness

has its CM at the geometric center.

• A cube of uniform density has CM at the geometric center, at equal distance from

all sides.

• The CM of a rectangular slab of uniform density lies at the intersection of all three

mid-planes of the slab, half-way between each pair of opposite sides.

• The CM of a solid cylinder of uniform density lies on the cylinder’s axis, half-way

between the opposite flat sides. Ditto for a disk, or for a cylindrical shell of a uniform

density and thickness.

2. The split-into-parts rule.

Suppose a body is made of several parts, and we know how to locate the centers of mass

for each individual part. Then the center of mass of the whole body is at

~Rcm(whole) =
1

Mtot

parts∑
i

M(i)× ~Rcm(i) (39)

In other words, we can replace each part with a point particle of the same mass located at

the part’s center of mass, and then apply eq. (36) for the resulting collection of particles.

Example: To find the CM of the Earth–Moon system, we may treat Earth as a point

particle of mass ME = 5.97 · 1024 kg located at the Earth CM (which is at the Earth

geometric center by the symmetry rule) and the Moon as another point particle of mass

MM = 7.35 · 1022 kg at the Moon’s CM (which is at the Moon’s geometric center). The
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distance between these two ‘particles’ is L = 384, 000 km, so by eq. (34), the CM of the

Earth–Moon system lies at the distance

LE =
MM

ME +MM
× L = 4660 km (40)

from the Earth’s center in the direction of the Moon. Note that the distance (40) is

smaller than the Earth’s radius RE = 6380km, so the system’s CM lies 1720 km below

the ground.

Note: the parts of a body or a system do not have to be separate from each other. As

long as you can mentally split the body into several parts and you can find the CM of

each part, you may use this rule. You do not need to actually cut the body!

Motion of the Center of Mass

Now consider a system of several moving particles or bodies. The motion of the system’s

center of mass is described by a time-dependent version of eq. (36):

~Rcm(t) =
N∑
i=1

mi

Mtot
×~ri(t) (41)

Consequently, the CM’s displacement is related to individual particles’ displacements as

∆~Rcm =
N∑
i=1

mi

Mtot
×∆~ri (42)

This formula works just as well for a system of macroscopic bodies (or body parts) rather than

point-like particles. And if a body or a part does not rotate or change its shape, we don’t need

to know where exactly is its CM located, we may simply use the overall displacement of that

body or part.
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The velocity of the system’s CM follows by dividing the displacement (42) by the time

interval ∆t and taking the limit ∆t→ 0. Thus,

~vcm = lim
∆t→0

∆~Rcm

∆t

= lim
∆t→0

1

∆t

N∑
i=1

mi

Mtot
×∆~ri

=
N∑
i=1

mi

Mtot
× lim

∆t→0

∆~ri
∆t

=
N∑
i=1

mi

Mtot
× ~vi

(43)

Moreover,

N∑
i=1

mi

Mtot
× ~vi =

1

Mtot

N∑
i=1

mi × ~vi =
1

Mtot

N∑
i=1

~Pi =
1

Mtot
× ~Pnet ,

hence the CM’s velocity is related to the net momentum of the system as simply

~vcm =
~Pnet

Mtot
⇐⇒ ~Pnet = Mtot × ~vcm . (44)

The net momentum has a nice property that it does not care for any internal forces between

different parts of the system. Only the external forces affect the net momentum according to

∆~Pnet = net impulse of external forces only. (45)

For a very short period of time, the impulse of a force is simply ~F×∆t and therefore

∆~Pnet = ∆t× ~Fnet
ext . (46)

Combining this formula with eq. (44) and dividing by ∆t we find

Mtot ×
~vcm

∆t
=

∆~Pnet

∆t
= ~Fnet

ext , (47)
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and therefore

Mtot × ~acm = ~Fnet
ext . (48)

In other words, the center of mass moves as a particle of mass Mtot subject to the external

forces acting on the system, but it does not care about the internal forces. In particular, when

the external forces balance each other, the CM either stays at rest or moves along a straight line

at constant speed. The forces between different parts of the system affect the relative motion

of those parts, but they don’t affect the CM motion.

Likewise, when the only external force is gravity, the CM moves like a projectile in free

fall. For example, when you take a high jump, your arms, legs, head, butt, etc., move in rather

complicated ways, but your center of mass follows a simple parabola.
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